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In this chapter, we discuss a few supply chain design concepts and optimization
models that have been applied in the energy sector. It is not our intention to
provide a comprehensive review of the vast literature. Our goal is to provide the
reader with pointers to some interesting and challenging problems, thereby trigger-
ing thoughts on the synergies between supply chain optimization and energy sus-
tainability. To this end, we select four supply chain research areas that have seen
substantial synergies with energy research. These four areas are strategic sourc-
ing, inventory management, supply chain competition, and network design. This
chapter discusses these areas and related applications in the energy industry.

1.1 = Strategic Sourcing and Power System Management

Strategic sourcing in supply chain management involves understanding supply char-
acteristics and making decisions such as supplier selection, procurement quantities,
and managing supply uncertainties. When suppliers are reliable (i.e., no supply
uncertainty), the sourcing strategy hinges on the trade-off between the efficiency
and responsiveness of the suppliers. When some suppliers are unreliable but offer
low-cost supply, one must strike a balance between the cost advantage of unreliable
suppliers and the cost of mitigating supply uncertainties. Both of these trade-offs
manifest themselves in power system management, which we discuss in this section.
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1.1.1 = Efficient and Responsive Sourcing in Power System Capacity Planning

Suppliers with short lead times allow a supply chain to quickly respond to demand
fluctuations, but the speed typically means extra cost to the supply chain. To man-
age the trade-off between efficiency and responsiveness, a supply chain can choose to
have a mixture of efficient and responsive suppliers. A well-known example is the
“dual-response” manufacturing in the supply chain for Hewlett Packard inkjet print-
ers [1]. One supplier has low production cost but long lead time; the other has short
lead time but high production cost. Using both suppliers allows Hewlett Packard
to serve a large portion of its demand efficiently while meeting short-term demand
fluctuations responsively. Other examples of using hybrid modes of production can
be seen in the fashion clothing industry [2].

Capacity planning for electric power systems also involves the trade-off between
efficiency and responsiveness, but with different features. Imagine yourself making
capacity investment decisions in an electric utility company. How would you plan a
portfolio of power generation technologies to meet uncertain electric demand over
the next twenty years? You can choose from a variety of technologies with very
different cost structures and construction lead times. It may take more than ten
years to undergo the approval and construction processes of a nuclear power plant,
whereas gas-fired generators can be installed within two years. The responsiveness
in this context pertains not to the production lead time but to the capacity con-
struction lead time. The total cost comprises the capital, operating, and outage
costs.

The above utility capacity planning problem was first studied by Gardner and
Rogers [3], who extended the traditional planning methods by taking differences
in technology lead times into account. They considered two groups of technologies
differentiated by construction lead times. The capacity investment of long lead time
technologies must be decided prior to the resolution of uncertain demand, whereas
the decisions for short lead time technologies need not be made until demand real-
izes. The problem is formulated as a two-stage stochastic program with recourse.
The solution is termed as an “act, learn, then act” solution and compared with the
solutions from traditional planning methods that ignore the difference in technology
lead times. One traditional approach is “act, then learn,” in which the capacity mix
is decided under a given demand forecast; no recourse is considered. Another tradi-
tional approach is “learn, then act,” in which a capacity mix is found for each given
demand realization, and then the solutions are combined, in an ad hoc fashion, to
arrive at an implementable solution.

The analysis in [3] reveals that the traditional planning methods may be seri-
ously flawed. There are circumstances where some short lead time technologies are
screened out by the traditional planning methods but enter the optimal solution;
there are also circumstances where some long lead time technologies are used in
the traditional solutions but dropped in the optimal solution. The optimal solution
tends to utilize the responsiveness provided by the short lead time technologies,
and thus forgoes some cost advantage of the long lead time technologies. The pa-
per informs the system planners that they need to examine the extent to which
technology lead times can be traded off against capital and/or operating costs.

Beyond uncertain demand, the utility capacity planning problem is often compli-
cated by many sources of uncertainty. The Fukushima tragedy has spurred reeval-
uation of nuclear power technology and resulted in regulatory changes in many
countries. The tightened Environmental Protection Agency (EPA) regulations on



emissions are pushing many coal-fired power generators toward retirement. The
shale gas boom has made natural gas power generation technologies more eco-
nomical, amidst regulatory and geopolitical uncertainties. Increasing uncertainties
require utility planners to build more flexibility into the power systems planning
process. Recognizing the value of flexibility also encourages the development of
technologies with shorter construction lead time.

1.1.2 « Random Capacity and Volume Flexibility in Power System Operations

In a typical power system, resources are coordinated by unit commitment and eco-
nomic dispatch programs. The unit commitment program is run every day to de-
termine which generators (i.e., units) are committed to power generation for each
hour of the next day, and the economic dispatch program is run in real time to
determine the output levels of the committed generators. These programs involve
sophisticated system modeling and optimization techniques and thus present great
opportunities for applying operations research and analytics.! Although these pro-
grams reflect high granularity of the reality, they do not directly serve the purpose
of designing energy policies.

For policy design, models need (at least initially) to be simpler than reality but
complicated enough to capture the essential trade-offs in reality. Such models will
allow various stakeholders to understand the mechanisms by which certain policies
affect key trade-offs and system performance. Large system models can then be used
to simulate the system performance and estimate the impact of certain policies.

In supply chain research, there has been a significant amount of work devoted
to managing supply uncertainties. We refer the reader to [5], [6], [7], and the refer-
ences therein. Below, we provide a perspective of thinking about power generation
systems that is useful for policy research. This perspective will lead to models that
share some features with the supply chain literature, yet present unique character-
istics.

Power generators can be categorized based on capacity certainty and volume
flexibility:

1. Random capacity, very low marginal cost;
2. Certain capacity, volume inflexible, low marginal cost;
3. Certain capacity, volume flexible, high marginal cost.

Type 1 capacity refers to intermittent generation from renewable sources, such
as wind and solar power. Their marginal cost of production is nearly zero, but they
have inherent uncertainties. Type 2 capacity includes nuclear power generators,
which have low marginal cost and are typically designed to run at a constant power
output level. Type 3 capacity consists of generators with varying degrees of flexi-
bility. They are more flexible than type 2 but also more costly to run. Coal-fired
generators have a higher marginal cost than nuclear power generators, but they can
adjust their output at a certain rate (known as the ramp rate). A higher ramp rate
means a shorter lead time for changing the output level. The most flexible gener-
ators are oil- and natural gas-fired combustion turbines, which can meet demand
fluctuations from minute to minute, but these generators have high operating cost

! For example, the Midcontinent Independent System Operator (formerly named Midwest ISO)
won the 2011 INFORMS Edelman Award [4] for using operations research to improve reliability
and efficiencies of the region’s power plants and transmission assets.



and thus are known as peaking generators. There are also gas-fired combined-cycle
generators whose flexibility is in between coal-fired generators and peaking genera-
tors. In terms of marginal cost, combined-cycle generators have become competitive
to coal-fired generators due to the lower price of natural gas in recent years.

With the above taxonomy, it is possible to look at power system operations from
the supply chain optimization angle. The combination of types 2 and 3 resources is
similar to the dual-response manufacturing discussed previously, with type 2 capac-
ity serving the baseload and type 3 capacity meeting demand fluctuations. There
are two key differences. First, the trade-off between efficiency and responsiveness
in power system operations occurs in a much shorter time frame, and power gen-
eration and consumption must be constantly balanced. Second, the cost structures
of power generators have their unique features, which we elaborate below.

Wu and Kapuscinski [8] model two subgroups within type 3 generators: fully
flexible generators (peaking generators) and intermediate generators. Fully flexible
generators can adjust their output almost instantaneously, whereas intermediate
generators have limited flexibility reflected by the four cost components illustrated
in Figure 1.1: (i) Cycling cost. Cycling an intermediate generator increases the
wear and tear cost and requires extra fuel during the startup process. The dis-
patchable intermediate capacity (solid curve) represents the intermediate capacity
that is started and can be dispatched to produce energy. (ii) Part-load penalty.
Intermediate generators are most efficient when producing at full load (i.e., all dis-
patchable capacity is utilized). Operating at any lower load increases the average
production cost; this extra cost is the part-load penalty. (iii) Min-gen penalty. In
normal operating conditions, the part load should stay above a minimum generation
level (e.g., 50% of the dispatchable capacity); otherwise a min-gen penalty will be
incurred. (iv) Peaking premium. The dispatchable intermediate capacity cannot be
adjusted instantaneously and thus peaking generators may be needed even if the
load on flexible resources is below the total intermediate capacity, which occurs in
the areas labeled as (iv) in Figure 1.1.

Figure 1.1. Costs of balancing electrical systems: An example
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The system operator aims to minimize total operating cost, which entails contin-
uously balancing the above cost components, whether or not intermittent generation
is present. The growth of intermittent generation resources (type 1) poses increas-
ing management challenges. If we meet 20% of energy demand from renewable
sources (mandated by the renewable portfolio standards in many states), the ac-



tual percentage of demand met from renewable sources can vary wildly from 0% to
100%, depending on the weather. These fluctuations introduce additional variabil-
ity into power systems, which complicates the trade-off among the aforementioned
cost components.

Wu and Kapuscinski [8] model the above cost components and study the policies
for using intermittent renewable energy. When intermittent generation was intro-
duced into most countries and regions, it was given priority to be used; this policy
is referred to as the priority dispatch policy. Implementing such a policy requires
little change to the system optimization programs because intermittent generation
is simply subtracted from the demand before the programs are run. With the rapid
growth in renewable energy penetration, the intermittency began to challenge the
systems’ ability to balance supply with demand. Curtailment thus became necessary
when excessive energy from intermittent resources threatened system reliability. In
some circumstances, although curtailment is not absolutely necessary, it provides
the system operator with an additional lever to manage variability, thereby reducing
system operating costs. Such curtailment is allowed under the economic curtailment
policy, but not under the priority dispatch policy.

In [8], the authors compare the two policies and identify the sources of the opera-
tional benefits of the economic curtailment policy. Among the four cost components
discussed above, economic curtailment policy significantly reduces cycling cost and
peaking premium. Curtailing intermittent generation during low-demand periods
helps reduce the need for cycling intermediate generators (i.e., reduces the depth of
the valleys in the dispatchable intermediate capacity in Figure 1.1). Curtailment
also allows more intermediate generators to start up earlier in the morning (i.e.,
shifts the increasing part of the dispatchable intermediate capacity in Figure 1.1
toward the left), reducing the peaking premium that would otherwise be incurred
to meet the rising morning demand. In addition to these operational benefits, eco-
nomic curtailment also increases the utilization of cheaper inflexible generators.

It is worth noting that the model in [8] is a stochastic dynamic programming
model. The value of economic curtailment is higher under the deterministic opti-
mization programs used prevalently in practice. This is because curtailment serves
as a recourse for the decisions generated by deterministic optimization programs,
but this recourse is not as valuable under stochastic dynamic programs because the
decisions are already adjusted in response to the weather and demand fluctuations.

The recent work by Al-Gwaiz et al. [9] is another example of utilizing the taxon-
omy introduced earlier to study energy policies. This work focuses on modeling and
analyzing the power market competition, which features supply function competi-
tion (i.e., each firm submits a supply function that specifies the amount of power
it is willing to produce at each price). Different from the classical supply function
equilibrium literature which studies the competition involving only generators of
type 3, the authors study the supply function competition between inflexible and
flexible generators. Furthermore, the authors introduce intermittent generation into
the model and analyze how it affects the competitive behavior of the other gener-
ators. This research opens a promising avenue for analyzing how random capacity
and volume flexibility impact power market competition.



1.2 = Inventory Management for Energy Storage Facilities

Energy storage is to grids as inventory is to manufacturing firms. Energy stor-
age is used to buffer against predictable variability (e.g., diurnal demand cycles)
and unpredictable variability (supply or demand shocks) to smooth conventional
resources’ power output. Smoothing production reduces cost because the power
generation cost function is highly convex: the marginal cost of nuclear power is
below $5 per MWh whereas that of a peaking unit can be $80 per MWh. The clas-
sic inventory optimization theory discussed in Chapter 33 focuses on minimizing
inventory-related costs under linear production/purchasing cost. Convex produc-
tion cost has also been considered in the literature, pioneered by Modigliani and
Hohn [10], who examine the optimal production schedule for meeting demand over
a planning horizon. However, energy storage operations involve different cost struc-
tures and thus present opportunities to develop inventory theory for energy storage
applications.

Electricity per se cannot be stored; to be stored, electricity must be converted
into other forms of energy, such as potential or chemical energy. This conversion
process involves energy loss, known as the conversion loss. The other closely related
measure is storage efficiency, which is equal to 1 —conversion loss rate. For example,
the storage efficiency of a lithium-ion battery ranges from 80% to 90%. The stored
energy does slowly decrease over time (similar to inventory holding cost), but this
type of energy loss is often negligible compared to the conversion loss, because
energy storage typically operates on daily cycles or more frequently.

The cost model represented in Figure 1.1 has been extended in [8] to include
costs of storage operations. It is interesting to study how storage operations impact
emissions. First, storage allows more clean intermittent energy to be used (instead
of being curtailed) and thus reduces emissions. Second, storage reduces the peaking
cost while increasing the use of intermediate capacity, which leads to more or less
emissions depending on types of fuels. Third, energy conversion losses during stor-
age operations increase emissions. The net effect of storage on emissions depends
on the relative strengths of these three factors and is detailed in [8].

Secomandi [11] develops a model for natural gas storage facilities, which can
also be applied to energy storage for power systems, as the model incorporates
injection and withdrawal loss factors (mathematically equivalent to conversion loss)
and holding cost. The author also considers a constraint on the rate at which energy
can be injected and withdrawn—important for both natural gas storage and energy
storage. The problem is formulated as a stochastic dynamic program, and structural
properties of the optimal policy are derived. The optimal policy is characterized
by two stage- and price-dependent base-stock targets: if inventory falls between the
two targets, it is optimal not to do anything; otherwise the firm should inject or
withdraw to bring the inventory as close as possible to the closer target.

Wu et al. [12] focus on understanding the types of real options in energy storage
operations and how one should trade off among these options. The authors analyze
a heuristic policy commonly used in practice (the rolling intrinsic policy, which
solves a deterministic problem every period using up-to-date price information)
and point out that this heuristic policy does not attempt to capture the options’
extrinsic values that arise from the stochastic evolution of the prices. The authors
then design a new heuristic policy, in which the prices are adjusted to approximate
the extrinsic values before applying the traditional policy. This simple idea turns
out to be very effective: in a three-period setting, the new policy is optimal, and in



multiperiod settings, numerical results for natural gas storage show that the new
policy recovers a significant portion of the value loss of the traditional policy.

It is important to note that many electricity markets include not only an energy
market but also an operating reserve market (also known as an ancillary services
market). Operating reserve is the reserved capacity that allows the system operator
to manage supply-demand imbalances caused by normal fluctuations or unexpected
disruptions. Energy storage can serve as an operating reserve, and thus the storage
value needs to incorporate the values derived from both energy and operating reserve
markets. Drury et al. [13] quantify the value of compressed-air energy storage
(CAES) derived from both markets. They find that the value from the energy
market alone (i.e., the energy arbitrage value) cannot support CAES investment in
most locations, but the addition of the revenues from providing operating reserves
can support CAES investment in several locations.

A promising research avenue is to construct rigorous models for valuing energy
storage participating in both the energy and operating reserve markets. The allo-
cation of storage capacity to each market is nontrivial. As discovered in [13], the
optimal allocation of storage capacity to provide operating reserves and energy ar-
bitrage has seasonal trends, and can shift significantly based on market conditions.
Energy storage capacity needs to be dynamically allocated to maximize its market
value.

Storage location choice is another important research direction. Denholm and
Sioshansi [14] consider the trade-off between colocating storage with a wind farm
and locating storage closer to the load. When storage is colocated with a remote
wind farm, the main advantage is the downsized transmission line and increased
utilization of the transmission line. However, being remote to the load, storage is
not as valuable as if it were closer to the load. The paper investigates whether the
reduced transmission costs exceed the costs associated with locating energy storage
away from the load.

1.3 = Competitive Feedstock Procurement for Biofuel Production

The biofuel supply chain resembles any other multi-echelon chain in that it involves
a number of stages for biomass harvesting, storage, processing, and transportation,
and those for biofuel manufacturing, transportation, and blending. The design
problem could be considered as an extension of the ones discussed in Chapter 33.
A unique feature of the biofuel supply chain, however, is that the increasing de-
mand for bioenergy crops leads to intensive competition for agricultural land—an
already scarce resource worldwide—among uses for energy production, food produc-
tion, and environmental conservation [16]. While traditional inventory management
theories normally consider resource competition among similar vendors, the feature
of biofuel supply chains leads to two direct consequences. First, ill-planned bio-
fuel industry growth may result in suboptimal land use, significantly reducing food
supply; in turn, this will lead to higher food prices, higher greenhouse-gas emis-
sions, and reduced biodiversity. This probably explains why U.S. corn prices have
increased dramatically since 2006 to record high in recent years [17]. Second, de-
sirable economic returns from biofuel production have renewed farmers’ interest in
reclaiming idle marginal lands as substitutes for regular farmland. Marginal land
has long served as a source of environmental conservation (e.g., CO2 sequestra-
tion, habitat preservation, soil productivity restoration); however, since 2007, two
million hectares of conserved land in the U.S. has been reclaimed, causing signifi-



cant environmental hazards, such as soil erosion and pollution from fertilizer runoff.
These issues directly involve intriguing organizational, operational, and infrastruc-
ture interdependencies among multiple industry sectors (e.g., energy, environment,
agriculture) that are difficult for any single industry stakeholder to handle. Such
issues often require holistic government intervention and policy regulations, which
could be designed using game-theoretic modeling techniques such as those discussed
in Chapter 33.

For example, the biofuel production goals (as specified by the U.S. government)
have raised a number of pressing questions: Are strategic changes in agricultural
land use and feedstock production (e.g., mix of feedstocks) required? How will
government regulations and climate control policies affect industry development?
What is the optimal size and locational distribution of biofuel refinery plants, how
should the feedstock supply contracts be priced, and to what extent is there a
divergence between the privately profitable and the socially optimal designs? In
particular, the government faces a difficult food-energy-environment trilemma: how
to stimulate the growth of the biofuel industry while, at the same time, protecting
food security and environmental sustainability?

Addressing these challenges requires a comprehensive analysis that holistically
addresses the biofuel industry, the food sector, the environmental sector, and the
involved farmland markets. Integrating multiple layers of decisions into one overar-
ching modeling framework is challenging because such decisions are often planned
and managed by different stakeholders, who often have independent, if not con-
flicting, objectives—this generally results in extremely complicated dynamic inter-
actions and requires novel solution methods. These types of problems seem to
be related to the earlier research on spatial location equilibrium, as first proposed
by [18], where a firm determines the location and production level of its facilities,
knowing that these decisions will have direct impacts on the sales prices of products
in spatially distributed markets. The concept was later extended to a plethora of
supply chain network equilibrium models, originating in [19], to address Nash or
Stackelberg types of competitions among decision-makers in multi-echelon supply
chain networks.

In the biofuel supply chain setting, the emerging industry (e.g., biofuel sec-
tor) penetrates into an existing business (e.g., food sector) and competes for feed-
stock/farmland supply through existing or new spatially distributed sources (or
markets). The emerging industry seeks the best strategic design configuration (e.g.,
refinery location and capacity, supply pricing and procurement, and transportation
logistics) to maximize its own profit. Meanwhile, the existing business sector re-
acts to the new business by rearranging its supply chain operations (e.g., adjusting
production level and alternating supply allocation), and each party looks for ways
to maximize its benefit under the changing business world. The introduction of
the emerging industry often involves spatial equilibrium of commodity flow, market
demand, and resource supply.

In an exploratory effort, Bai et al. [20] propose a bi-level leader-follower game
model that incorporates farmers’ decisions on land use and market choice into the
biofuel manufacturers’ supply chain design problem. The model determines the op-
timal number and locations of biorefineries, the required prices for these refineries to
compete for feedstock resources, and farmers’ land use choices between food and en-
ergy. The model is solved by transforming the mixed-integer bi-level problem into a
mixed-integer quadratic program based on Karush-Kuhn-Tucker (KKT) conditions.
Noncooperative and cooperative games are studied respectively to address possible



business partnership scenarios (e.g., via long-term leases) between feedstock suppli-
ers and biofuel manufacturers. Using corn as an example of feedstock crops, spatial
market equilibrium is utilized to model the relationship between corn supply and
demand, and the associated price variations in local grain markets. It is found that
biofuel supply chain design does have a direct impact on land use choices for farms
in the area. Compared with the noncooperative game scenario, cooperation among
the industry and the farmers tends to save transportation cost and generate higher
profit for the whole supply chain.

In a follow-up study [21], the same authors extend the framework by introduc-
ing government regulations on farmland use and an associated marginal land mar-
ket into the Stackelberg game. This model better represents the problem realism
with more land-use options, including the possibility of marginal land reclamation
and energy/food market equilibria, thus providing more comprehensive economic
insights. Noting that farmers are generally independent stakeholders, a land-use
allowance concept and a cap-and-trade mechanism are introduced to provide indi-
rect economic incentives for the farmers to comply with government restrictions.
These two models are proved to achieve equivalent land use patterns at optimal-
ity, and the proposed land-use constraints are shown to be effective in balancing
the amount of farmland used for food and energy production. In some cases, the
proposed cap-and-trade mechanism could result in less profit for the leading biofuel
manufacturers but higher social welfare for the entire system (including food, fuel,
and land markets).

Wang et al. [22] further incorporate the blenders into the scope of the bio-
fuel supply chain. The biofuel consumption mandate is enforced via the Renewable
Identification Number (RIN) system, a tracking mechanism that monitors obligated
parties’ compliance. The biofuel manufacturers obtain an RIN for each batch of bio-
fuel production from the EPA; RINs are then transferred to blenders (e.g., energy
companies) during biofuel consumption, and they can be traded among blenders;
finally, the blenders are mandated to hand in specified number of RINs to the EPA
at the end of each year, or else penalties will be imposed. In this work, compe-
tition among food and biofuel industry players (including among multiple biofuel
manufacturers) is addressed via Nash equilibrium models and bi-level Stackelberg
leader-follower models. Based on these models, the advantages and shortcomings
of the current biofuel production mandate are analyzed.

These biofuel supply chain studies generally formulate the problems into discrete
mathematical programs with equilibrium constraints (MPECs), which are gener-
ally nonlinear, nonconvex, and hence quite hard to solve. Solution methods are
generally based on relaxation, decomposition, and transformation. Finding efficient
solution approaches for such problems remains a challenge. As a side note, some
approximation schemes for large-scale discrete decisions (e.g., facility location) into
differentiable continuous counterparts (e.g., facility density) have been proposed to
reduce the complexity of the problems [23].

1.4 = Supply Network Design under Transportation Congestion and
Infrastructure Deterioration
The changes in the energy industry have created unique challenges for many criti-

cal lifeline infrastructure systems far beyond those in the energy sector. Expanding
ethanol production, for example, will not only lead to the expansion of biorefinery



systems but also strain existing supporting infrastructures that are already aging
and degrading (see [15] for a review). In particular, the already congested local and
regional transportation networks are experiencing increasing freight demands for
supplying feedstocks to refineries and delivering ethanol to consumers. Due to the
low energy density of feedstock biomass, transportation of the bulky feedstock (and
ethanol) incurs one of the major operational costs in biofuel supply chain systems.
Trucking remains the dominant mode of transportation because alternative modes
would either require heavy investment or remain unsuitable for the emerging bio-
fuel industry—for example, the current pipeline infrastructure cannot be used for
ethanol transportation due to erosion concerns. Most bioenergy production facilities
are designed with a very large production capacity to achieve economies of scale.
As such, a large number of trucks must be added to the highway network to ship
sufficient low-energy-density biomass to satisfy the enormous ethanol production
requirement,.

Earlier work on the bioenergy supply chain [24] formulates a standard discrete
facility location model to optimize the biofuel supply chain, where the point-to-point
costs from transporting biomass, ethanol, and by-products are assumed to be ex-
ogenously given. Establishment of industry facilities, however, often induces heavy
vehicle traffic that exacerbates congestion and infrastructure (e.g., bridge, pave-
ment) deterioration in the neighboring highway network. This has been the case
for the booming energy industry, especially when new production facilities are built
near neighborhoods that were not originally built for heavy traffic. For instance,
Iowa’s growing renewable energy industries have had significant impacts on the
quality of its transportation infrastructure, such that pavement repairs and mainte-
nance costs in multiple Iowa rural counties increased significantly during and after
the construction of biofuel production plants [25]. Such unintended consequences of
energy production facility development increase the social cost to the general public
(e.g., due to traffic delay and highway maintenance), and in turn have a negative
impact on the efficiency of the freight shipments associated with these facilities.

Planning of biorefinery locations and biofuel supply chains, therefore, should
be made cautiously to establish a sustainable bioenergy economy in which the in-
vestment in refinery construction and operations, the cost for biomass and ethanol
transportation, and the related socio-economic impact are minimized. Bai et al.
[26] develop a model to plan biofuel refinery locations where the total system cost
for refinery investment, feedstock and product transportation and public travel is
minimized. Shipment routing of both feedstock and product in the biofuel supply
chain and the resulting traffic congestion impact are incorporated into the model to
decide optimal locations of biofuel refineries. A Lagrangian relaxation based heuris-
tic algorithm is introduced to obtain near-optimal feasible solutions efficiently. It is
found through computational case studies that ignoring congestion in biofuel sup-
ply chain design could lead to much higher transportation costs for not only the
biomass shipments but also the public. Hajibabai and Ouyang [27] further extend
the model to allow for possible highway /railroad capacity expansion at chokepoints
around the network. It is found that significant cost reductions can be achieved by
simultaneously improving the capacity of the transportation network and expanding
the biofuel supply chain.

Hajibabai et al. [28] present an integrated facility location model that simul-
taneously considers traffic routing under congestion and pavement rehabilitation
under deterioration. The objective is to minimize the total cost due to facility in-
vestment, transportation cost including traffic delay, and pavement life-cycle costs.



Building upon analytical results on optimal pavement rehabilitation, the problem
is formulated into a bi-level mixed-integer nonlinear program, with facility location,
freight shipment routing, and pavement rehabilitation decisions in the upper level
and traffic equilibrium in the lower level. This problem is then reformulated into an
equivalent single-level problem based on the KKT conditions and piecewise linear
approximation of traffic delay functions. Computational analysis shows that the
proposed model can improve supply chain sustainability and minimize its negative
societal impacts from congestion and pavement damage. In particular, significant
reductions in pavement-related costs (e.g., agency cost and users’ vehicle operat-
ing cost) as well as overall system-wide cost are observed, indicating that the joint
optimization of the biofuel supply chain and the supporting transportation infras-
tructure not only results in a potential for Pareto improvement but also provides
incentives for policy making and mechanism design through benefit/cost realloca-
tion.

The supporting infrastructure is not just impacted by biofuel supply chains;
similar problems are seen in a wide range of other energy industries. For example,
in Pennsylvania and South Dakota, the heavy truck traffic induced by the emerg-
ing natural gas industry (e.g., for transporting water and supplies in support of
the hydraulic fracturing process) has caused not only congestion to the residents in
nearby towns but also severe damage to state and local roads, resulting in hundreds
of millions of dollars spent on pavement repair and replacement. More generally,
the development and transmission of energy can produce an array of effects at the
community level, not only due to road network congestion and pavement deteriora-
tion but also including overburdened municipal services, reduced water availability
for conventional uses, economic volatility, disruption of social and cultural patterns,
and the stigma associated with environmental health risk and industrialization. A
holistic coupled modeling approach, with embedded physical and social processes,
is needed to design and analyze the energy supply networks.

1.5 = Concluding Remarks

Supply chain design and optimization aim at matching supply with demand at
minimum total cost, which is exactly the goal of the energy industry. With this
common goal, it is not surprising that synergies exist between the two research
fields. The purpose of this chapter is to highlight some of the existing synergies
and provide the reader with some starting points for further reading. We hope
the discussion in this chapter will foster more synergies between the two important
fields in the future.
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