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Abstract

In this paper, we aim to study the structure choice of supply chains under competitive environ-

ment with uncertain demand. We consider two competing supply chains, each of which chooses

to either vertically integrate or decentralize with coordinating contracts. We first analyze firms’

strategic behavior under given supply chain structures: two integrated chains (II), two decentral-

ized chains (DD), and a mixed structure with one decentralized chain and one integrated chain.

We then compare different supply chain structures and examine the equilibrium structure choice.

We find that the equilibrium structure depends on the product characteristics. For substitutable

products, DD is the equilibrium supply chain structure choice, whereas for complementary prod-

ucts, II is the equilibrium structure. Furthermore, a high demand uncertainty strengthens these

equilibrium choices.
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1. Introduction

In many industries, the competition between firms has become chain-to-chain or channel-to-channel

competition, in which an upstream or downstream firm in one supply chain not only competes

with its counterpart in the other chain but also interacts with the entire other chain. Chain-to-

chain competition is seen in a variety of industries such as fast food, fashion clothing, automobiles,

electronics, and telecom industries. For these industries, how a supply chain is structured—vertically

integrated or decentralized—critically impacts the supply chain’s performance in the competition.

This paper aims to analyze how the choice of supply chain structure affects firms’ strategic behaviors

and what supply chain structure may emerge as an equilibrium choice.

We consider the inventory competition between two competing supply chains. Each chain has one

manufacturer and two exclusive retailers. The two manufacturers produce differentiated products,

which can be either substitutable or complementary. Each retailer faces random demand and, before

the demand is realized, the retail inventory decision must be made by the retailer (if its supply chain

is decentralized) or by the entire integrated chain. A retailer’s inventory affects the probability distri-

butions of the demands at all retailers. For substitutable products, a retailer’s inventory stimulates

its own demand while having demand-stealing effect on all other retailers; for complementary prod-

ucts, a retailer’s inventory stimulates (instead of stealing) the competing chain’s demand. The two

chains engage in inventory competition by making newsvendor type of decisions. Our setting may

be applied to capacity investment competition, where a high service capacity has demand-stealing

effect on other service providers.

When a chain is integrated, the inventory decision is made by the entire chain; when a chain is

decentralized, each retailer makes its own inventory decision, but all firms in the chain can coordi-

nate their decisions via supply contracts. We examine three possible supply chain structures: two

integrated chains, two decentralized chains, and the mixed structure with one integrated chain and

one decentralized chain. These structures are also compared with the first-best structure where one

decision-maker decides inventory for both chains. The key questions are: How do firms compete

under a given supply chain structure? Which structure outperforms other structures in terms of sup-

ply chain profitability, and under what conditions? What is the equilibrium supply chain structure

choice? What is the impact of demand uncertainty on the supply chain structure choice?

The chain-to-chain or channel-to-channel competition has been studied in the analytical mar-

keting literature. McGuire and Staelin (1983) analyze various retail distribution structures in the
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context of two competing manufacturers, each selling products through an independent retailer. They

explain that a strategic reason for manufacturers to use intermediaries is to shield themselves from

possibly ruinous price competition. Coughlan (1985) extends this research to a more general demand

function and applied it to the electronic industry. Moorthy (1988) links the value of decentralization

to the concept of strategic interaction. Zhao, Atkins, and Liu (2009) endogenize the product differen-

tiation and examine the supply chain structure under both price and service competition. There are

also models for the industry settings where retailers carry an assortment of products from multiple

manufacturers. Choi (1991) considers two manufacturers selling their products through a common

retailer. Lee and Staelin (1997) and Trivedi (1998) generalize the above work to a competitive envi-

ronment with two manufacturers and two common retailers. We also analyze the competition among

manufacturers and (exclusive) retailers, but we focus on a setting where demands are uncertain and

retail inventories must be decided prior to the realization of the demands.

Supply chain contracts and industry structure choices under demand uncertainty have been con-

sidered in the literature. Kranton and Minehart (2000) compare vertical integration versus networks.

(Vertically integrated firms make their own inputs, while firms in networks procure inputs from sev-

eral suppliers who, in turn, sell to several network firms.) They model demand uncertainty as

incorporated in firms’ random valuation of the supply, and there is no inventory decision in their

framework. They show that firms are likely to form networks when they experience large idiosyn-

cratic demand shocks. Ai, Chen, and Ma (2012) examine a setting where manufacturers in two

competing supply chains may choose either a wholesale price contract in which the retailer’s demand

forecasting information is not shared, or a revenue-sharing contract in which the retailer’s demand

forecasting information is shared. They find that supply chain contract choice depends on the degree

of product substitution and demand uncertainty.

Competition among newsvendors has been studied in the literature. Parlar (1988) models a

duopoly of two newsvendors selling substitutable products. When either newsvendor experiences

stockout, a fraction of the excess demand switches to the other. Lippman and McCardle (1997) start

with aggregate industry demand and specify a variety of rules to split the realized aggregate demand

among firms. Mahajan and van Ryzin (2001) derive the demand from dynamic consumer choice.

There are also simple allocation rules that lead to more explicit solution. Cachon (2003) considers

proportional demand allocation rule and reaches qualitatively consistent insights.

In a competitive environment, inventory has demand-stealing effect and demand-stimulating

effect. Cachon (2003) finds that “Competition makes the retailers order more inventory because
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of the demand-stealing effect: each retailer ignores the fact that ordering more means the other

retailers’ demands stochastically decrease. . . . Furthermore, if retailers sell complements, rather than

substitutes, then the demand-stealing effect is reversed: each retailer tends to understock because

it ignores the additional demand it creates for other retailers.” Dana and Petruzzi (2001) point out

that consumers are more likely to purchase from stores that have fewer stockouts. They provide a

consumer choice model in which consumers maximize expected utility by taking into account the

inventory available at the firm. In this paper, we model the demand distribution as a linear function

of the inventory levels. This linear approximation allows us to model both demand-stealing and

stimulating effects as well as both substitutable and complementary products. Furthermore, the

research efforts in the literature suggest the difficulty in obtaining explicit formulas for equilibrium

analysis. This paper aims to explicitly derive and compare equilibria under various supply chain

structures, and our demand model makes such analysis tractable.

In this paper, we do not consider price competition nor transshipment between retailers. For

models with both price and inventory competition, see Bernstein and Federgruen (2005), and for

models with transshipment after the realization of demand, see Anupindi, Bassok and Zemel (2001).

2. The Model

We analyze two competing supply chains, indexed by i = 1, 2, with chain i supplying product i. The

two products can be either substitutable or complementary. Chain i has one manufacturer, referred

to as manufacturer i, and two exclusive retailers, indexed by (i, j), j = 1, 2. As a convention, we use

−i to refer to the other chain/manufacturer/product, and use (i,−j) to refer to the other retailer of

chain i.

We consider a single-period setting where both supply chains produce and stock their products

before the selling season starts. Let ci denote manufacturer i’s per-unit production cost, and let vi

denote the per-unit salvage value (if 0 < vi < ci) or disposal cost (if vi < 0) at the end of the selling

season. The retail prices for the two products, p1 and p2, are assumed to be exogenous.

2.1 Demand Model

The two chains compete by deciding inventory levels before the selling season. Let qij denote the in-

ventory level at retailer (i, j) and let q = (q11, q12, q21, q22). Let random variable ξij represent retailer

(i, j)’s natural demand, which is the demand occurring at the retailer (i, j) when no retailer carries
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any inventory (q = 0). The random variables ξij’s may be dependent. For analytical simplicity,

we assume the demands facing retailers in the same chain, ξi1 and ξi2, have the same probability

distribution, with cumulative distribution function denoted as Fi(x), i = 1, 2.

The probability distribution of the demand at any retailer is affected by the inventory available

at all retailers. To facilitate the analysis, we assume these effects have a linear form. Specifically,

the random demand facing retailer (i, j) is modeled as

Dij(q) = ξij + αiqij − βiqi,−j −
1

2
γ−i(q−i,1 + q−i,2), i, j = 1, 2, (1)

where

1 > αi ≥ βi ≥ 0, βi ≥ γi, 1 > αi − βi − γi ≥ 0, for i = 1, 2, and γ1γ2 ≥ 0. (2)

In model (1), inventory levels shift the natural demand in the following ways:

• The term αiqij suggests that inventory availability stimulates own retailer’s demand.

• The term −βiqi,−j reflects a within-chain demand-stealing effect: the availability of product i

at a retailer reduces the demand at the other retailer of the same chain.

• The last term −1
2γ−i(q−i,1 + q−i,2) captures the between-chain demand-stealing effect when

γ1 > 0 and γ2 > 0 (i.e., substitutable products) or demand-stimulating effect when γ1 < 0 and

γ2 < 0 (i.e., complementary products).

The assumption of αi ≥ βi in (2) indicates that raising inventory level qij does not reduce own

chain’s demand. We refer to αi − βi as inventory’s net stimulating effect on own chain’s demand.

Because γ1 and γ2 have the same signs (assumption of γ1γ2 ≥ 0), we use γ > 0 and γ < 0

to indicate substitutable and complementary products, respectively, throughout the paper. For

substitutable products, βi ≥ γi > 0 in (2) implies that the demand-stealing effect is stronger within

chains than between chains, because the retailers of the same chain carry the same product.

The total effect of inventory qij on all demands is αi − βi − γi, assumed to be in [0, 1) in (2).

That is, one unit of inventory does not reduce the total demand, nor does it stimulate more than

one unit of demand.

We assume qij ∈ [0, qmax
ij ] and denote the strategy set as Q =

{
q : qij ∈ [0, qmax

ij ]
}
. Throughout

the paper, we assume Dij(q) ≥ 0, for q ∈ Q and all equilibria are attained within the interior of Q.

The assumption of linear effects of inventory on demand allows us to explicitly analyze the

competition between the two chains and derive useful insights.
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2.2 Service Level and Inventory

Let Sij denote the service level of retailer (i, j). That is,

Sij = P
[
Dij(q) ≤ qij

]
= Fi

(
(1− αi)qij + βiqi,−j +

1

2
γ−i(q−i,1 + q−i,2)

)
, i, j = 1, 2. (3)

Assume Fi(x) is continuous and strictly increasing in x for Fi(x) ∈ (0, 1). Thus, F−1
i (y) = inf

{
x :

F (x) ≥ y} is continuous and strictly increasing in y for y ∈ (0, 1). Then, (3) leads to a system of

linear equations for q:

(1− αi)qij + βiqi,−j +
1

2
γ−i(q−i,1 + q−i,2) = F−1

i (Sij), i, j = 1, 2. (4)

For given retail service levels Sij ∈ (0, 1), i, j = 1, 2, the system of equations in (4) uniquely deter-

mines the inventory level q. In particular, if the two retailers in chain i achieve service level Si, i.e.,

Si1 = Si2 = Si, for i = 1, 2, then system in (4) determines the corresponding inventory levels:

qi1 = qi2 =
1

η

[
(1− α−i + β−i)F

−1
i (Si)− γ−iF

−1
−i (S−i)

]
, i = 1, 2, (5)

where η = (1− α1 + β1)(1− α2 + β2)− γ1γ2. Note that the relations in (2) imply that η > 0.

3. Supply Chain Structures and Strategic Interactions

This section analyzes the firms’ strategic behaviors under various supply chain structures. Four

structures are analyzed and illustrated in Figure 1.

(a) Integrated industry: The entire industry is integrated and decision-making is centralized.

(b) II: Each manufacturer is integrated with its own retailers.

(c) DD: Both chains are decentralized.

(d) DI: One chain is integrated and the other is decentralized.

3.1 Integrated Industry

We first consider a benchmark case where an integrated industry centrally decides the stocking

levels at all retailers to maximize the total expected profit. Throughout the paper, we use
∑
i,j

as

an abbreviation for
2∑

i=1

2∑
j=1

, use
∑
i

for
2∑

i=1
, and use

∑
j

for
2∑

j=1
. The industry aims to maximize the
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Figure 1: Industry Structures
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expected total profit:

max
q

∑

i,j

[
(pi − ci)qij − (pi − vi)E

[
(qij −Dij(q))

+
]]
. (6)

Note that (qij−Dij(q))
+ is jointly convex in q because Dij(q) is linear in q. Hence, the objective

in (6) is jointly concave in q.

Theorem 1 The industry optimal service levels and inventory levels are given by Sij = S∗
i and

qij = q∗i , for i, j = 1, 2, where

S∗
i

def
=

pi − ci −
γi(p−i−c−i)
1−α−i+β−i

(pi − vi)(1 − αi + βi −
γ1γ2

1−α−i+β−i
)
, (7)

q∗i
def
=

1

η

[
(1− α−i + β−i)F

−1
i (S∗

i )− γ−iF
−1
−i (S

∗
−i)

]
. (8)

The resulting optimal profit of the industry is

π∗ =
∑

i

[
2(pi − ci)q

∗
i − 2(pi − vi)

∫ F−1

i
(S∗

i )

0
Fi(u)du

]
. (9)

Furthermore, S∗
i and q∗i increase in αi − βi and decrease (increase) in α−i − β−i if γ > 0 (γ < 0).

The total profit π∗ increases in αi − βi and decreases in γi.

Note that if αi = βi = γi = 0, then S∗
i = (pi−ci)/(pi−vi), the standard newsvendor’s service level.

The monotonicity properties of S∗
i and q∗i in Theorem 1 reveal that if inventory’s net stimulating
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effect on own chain’s demand, αi − βi, increases for product i, the industry should raise product i’s

inventory and service level, and reduce (raise) the substitutable (complementary) product’s inventory

and service level.

The monotonicity properties of π∗ also justify our intuition that strong net demand-stimulating

effect (high αi − βi) and weak product substitution or strong product complementarity (low γ) are

favorable conditions for industry profitability.

3.2 Two Integrated Chains (II)

In this structure, each manufacturer vertically integrates with its exclusive retailers. The two inte-

grated chains engage in inventory competition. Given chain (−i)’s inventory levels q−i,1 and q−i,2,

chain i’s best response problem is

max
qi1,qi2

∑

j

[
(pi − ci)qij − (pi − vi)E

[
(qij −Dij(q))

+
]]
. (10)

The first-order condition for (10) leads to chain i’s optimal service level, which in turn determines

the best response in terms of inventory levels. The equilibrium inventory levels can then be found,

which is also stated in Theorem 2.

Theorem 2 (II equilibrium) When each chain is vertically integrated, the equilibrium service lev-

els and inventory levels are given by Sij = SII
i and qij = qIIi , for i, j = 1, 2, where

SII
i

def
=

pi − ci
(pi − vi)(1− αi + βi)

, (11)

qIIi
def
=

1

η

[
(1− α−i + β−i)F

−1
i (SII

i )− γ−iF
−1
−i (S

II
−i)

]
. (12)

Chain i’s profit in the eqilibrium is

πIIi = 2(pi − ci)q
II
i − 2(pi − vi)

∫ F−1

i
(SII

i
)

0
Fi(u)du. (13)

Furthermore, SII
i , q

II
i , and πIIi increase in αi − βi; q

II
i and πIIi decrease (increase) in α−i − β−i if

γ > 0 (γ < 0).

Note that if the two products are independent (γ1 = γ2 = 0), the service level SII
i in (11) is

identical to S∗
i in (7). It can be shown that for substitutable products, SII

i > S∗
i , whereas for

complementary products, SII
i < S∗

i . (See Corollary 5 in §4.1.) Intuitively, both chains focus on

inventory’s net stimulating effect on own chain’s demand and ignore the negative (positive) impact

of its inventory on the substitutable (complementary) product, whereas the service level S∗
i in (7)
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internalizes the inventory effect between chains.

From Theorem 2, an increases in the net stimulating effect αi − βi results in a higher profit for

chain i, while it reduces (improves) the profit of the substitutable (complementary) product.

3.3 Two Decentralized Chains (DD)

Suppose that both chains are decentralized and, within each chain, the manufacturer and its retailers

are coordinated via supply contracts. As discussed in §1, the focus of this paper is chain-to-chain

competition, not competition between manufacturers. Thus, we assume the manufacturer and retail-

ers are coordinated to maximize their own chain’s profit. For many channel-coordinating contracts,

the contract parameters can be adjusted to achieve various allocations of the supply chain profit

between the manufacturer and the retailers.

The chain-to-chain competition in DD structure involves two stages. In the first stage, both

chains decide their target service levels (via coordinating contracts). In the second stage, the four

retailers compete in inventories under the given contracts.

In the first stage, various forms of contracts can serve the purpose of setting target service level.

For example, under a buyback contract with wholesale price wi and buyback rate bi, retailer (i, j)’s

problem becomes

max
qij≥0

(pi −wi)qij − (pi − bi)E
[
(qij −Dij(q))

+
]
. (14)

It can be verified that the above retailer’s problem leads to the following service level:1

Sc
i =

pi − wi

(pi − bi)(1 − αi)
.

From this point onward, we do not assume any specific contract form. We let Sc
i denote the

target service level chosen by chain i in the first stage. Then, using (5), the second-stage equilibrium

inventory levels are

qi1 = qi2 =
(1− α−i + β−i)F

−1
i (Sc

i )− γ−iF
−1
−i (S

c
−i)

η
. (15)

In the first-stage game, each chain anticipates the retailers’ equilibrium decisions in (15) and

1The standard newsvendor under buyback contract would aim at service level (pi − wi)/(pi − bi). In our setting,
the retailer takes into account inventory’s stimulating effect on its own demand, and thus the service level becomes
(pi − wi)/[(pi − bi)(1− αi)].
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chooses service levels simultaneously. Chain i’s problem can be written as (using (15)):

max
Sc
i

2(pi − ci)
(1− α−i + β−i)F

−1
i (Sc

i )− γ−iF
−1
−i (S

c
−i)

η
− 2(pi − vi)

∫ F−1

i
(Sc

i )

0
Fi(u)du (16)

The objective in (16) is generally not concave, but the proof of Theorem 3 shows that this objective

is quasi-concave in Sc
i . Hence, the optimal service level is determined by the first-order condition:

2(pi − ci)(1− α−i + β−i)

η

∂F−1
i (Sc

i )

∂Sc
i

− 2(pi − vi)S
c
i

∂F−1
i (Sc

i )

∂Sc
i

= 0, (17)

which leads to the optimal service level given in the following theorem.

Theorem 3 (DD equilibrium) When both chains are decentralized, the equilibrium service levels

and inventory levels are given by Sij = SDD
i and qij = qDD

i , for i, j = 1, 2, where

SDD
i

def
=

pi − ci
(pi − vi)(1− αi + βi −

γ1γ2
1−α−i+β−i

)
, (18)

qDD
i

def
=

1

η

[
(1− α−i + β−i)F

−1
i (SDD

i )− γ−iF
−1
−i (S

DD
−i )

]
. (19)

Chain i’s profit in the equilibrium is

πDD
i = 2(pi − ci)q

DD
i − 2(pi − vi)

∫ F−1

i
(SDD

i
)

0
Fi(u)du. (20)

Furthermore, SDD
i increases in αi−βi and α−i−β−i. If γ < 0, then qDD

i and πDD
i increase in αi−βi

and α−i − β−i.

In Theorems 1 and 2, q∗i and qIIi increase in αi − βi, but in the DD structure when γ > 0, qDD
i

does not necessarily increase in αi − βi. This is because the competing chain’s service level SDD
−i

increases in αi − βi, which may cause qDD
i in (19) to decrease, and πDD

i may decline as well. When

γ < 0, as αi − βi increases, inventory levels and profits of both chains increase.

It is important to note that the coordinated decentralized chains do not behave as the integrated

chains in the II structure. Integrated chains compete directly using inventory levels: In the II equi-

librium, chain i’s inventory levels are optimized given the other chain’s inventory decisions. However,

decentralized chains do not decide inventory directly, but decide service levels in the first stage. Both

chains recognize that their own service levels will influence the competing chain’s inventory levels in

the second stage, reflected by (5) and elaborated below:

• If the two products are substitutes, then a high own chain’s service level reduces the competing

chain’s inventory. This effect provides incentives for both decentralized chains to raise their

service levels above those in the II equilibrium.
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• If the two products are complements, then a high own chain’s service level increases the com-

peting chain’s inventory, which in turn stimulate own chain’s demand. This effect also provides

incentives for both chains to raise their service levels above those in the II equilibrium.

Summarizing the above discussion, the service level SDD
i in (18) is higher than SII

i in (11),

regardless of the whether the products are substitutes or complements. The only situation that

SDD
i = SII

i is when the two products are independent (γ = 0).

3.4 A Decentralized Chain Competing with an Integrated Chain (DI)

Suppose that chain 1 is decentralized and chain 2 is integrated. In the decentralized chain, the

manufacturer and the retailers are coordinated via contracts. Unlike the DD structure where neither

chain can decide inventory levels in the first-stage game, in the DI structure, the integrated chain

decides inventory levels, while the decentralized chain decides its service level. In the second stage,

the decentralized retailers decide inventory levels.

We first discuss the intuitions on the equilibrium behavior, and then formally prove these in-

tuitions. Focus on the decentralized chain (chain 1) first. If the competing chain (chain 2) is also

decentralized, the analysis on DD structure shows that chain 1 chooses service level to influence the

chain 2’s inventory decisions in the second stage. If the chain 2 is integrated, however, it commits

inventory levels in the first stage, and thus, the best response of chain 1 is to induce its retailers

to choose the best inventory levels in response to chain 2’s inventory, which coincides with the best

response problem of an integrated chain in the II structure. Therefore, chain 1’s behavior may be

similar to an integrated chain in the II structure even though it is decentralized.

We now turn to the integrated chain 2 in the DI structure. Chain 2 understands that it makes

inventory decisions earlier than chain 1’s retailers decide inventory. Chain 2 also recognizes that its

service level influences chain 1’s inventory decision, reflected by (5). Hence, chain 2’s problem is

similar to that in the DD structure. Therefore, chain 2’s behavior may be similar to a decentralized

chain in the DD structure even though it is integrated.

We now formalize the above intuitions. In the first-stage game, chain 1 chooses coordinating

contract and chain 2 decides inventory. Consider chain 1’s best response problem to chain 2’s

inventory q21 and q22. Chain 1 aims to maximize its profit by choosing a contract and its parameters.

This contract should induce chain 1’s retailers to choose the best inventory levels in response to

chain 2’s inventory levels. From the II structure in Theorem 2, we know that the service level that
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maximizes chain 1’s profit is given by SII
1 in (11). Hence, chain 1 will set a contract such that

S1j = SII
1 . (21)

This confirms our intuition that the behavior of the decentralized chain in the DI structure is similar

to an integrated chain in the II structure.

Using (3), we can write the condition (21) as

S1j = F1

(
(1− α1))q1j + β1q1,−j +

1

2
γ2(q21 + q22)

)
= SII

1 , j = 1, 2.

From the above equation, we can find chain 1’s inventory level as a best response to chain 2’s

inventory q21 + q22:

q11 + q12 =
−γ2(q21 + q22) + 2F−1

1 (SII
1 )

1− α1 + β1
. (22)

Clearly, for substitutable (complementary) products, inventories are also strategic substitutes (com-

plements).

Next, we consider the integrated chain 2 making inventory decisions in anticipation of chain 1’s

response in (22). Using (22), chain 2’s problem can be written as

max
q21,q22

∑

j

[
(p2 − c2)q2j − (p2 − v2)E

[(
q2j −D2j(q12, q22)

)+]]
, (23)

where

D2j(q21, q22)
def
= ξ2j + α2q2j − β2q2,−j +

γ1γ2(q21 + q22)

2(1− α1 + β1)
−
γ1F

−1
1 (SII

1 )

1− α1 + β1
. (24)

Because D2j(q21, q22) is linear in q21 and q22, the objective function in (23) is concave in q21 and q22.

Using (24), the objective in (23) can be written as

∑

j

[
(p2 − c2)q2j − (p2 − v2)

∫ q2j

0
F2

(
u− α2q2j + β2q2,−j −

γ1γ2(q21 + q22)

2(1− α1 + β1)
+
γ1F

−1
1 (SII

1 )

1− α1 + β1

)
du

]
.

The first-order condition is

p2 − c2
p2 − v2

=
(
1− α2 −

γ1γ2
2(1− α1 + β1)

)
S2j +

(
β2 −

γ1γ2
2(1 − α1 + β1)

)
S2,−j, j = 1, 2.

The above optimality condition is equivalent to

S2j = SDD
2 , j = 1, 2,

where SDD
2 is defined in (18). This proves our intuition that the behavior of the integrated chain in

the DI structure is similar to a decentralized chain in the DD structure.
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The above results are summarized in the following theorem.

Theorem 4 (DI structure) When chain 1 is decentralized and chain 2 is integrated, the equilib-

rium service level and inventory level are given by Sij = SDI
i and qij = qDI

i , for i, j = 1, 2, where

SDI
1 = SII

1 =
p1 − c1

(p1 − v1)(1 − α1 + β1)
, (25)

SDI
2 = SDD

2 =
p2 − c2

(p2 − v2)(1 − α2 + β2 −
γ1γ2

1−α1+β1
)
, (26)

qDI
i

def
=

1

η

[
(1− α−i + β−i)F

−1
i (SDI

i )− γ−iF
−1
−i (S

DI
−i)

]
. (27)

Chain i’s profit in the equilibrium is

πDI
i = 2(pi − ci)q

DI
i − 2(pi − vi)

∫ F−1

i
(SDI

i
)

0
Fi(u)du. (28)

Furthermore, SDI
2 , qDI

2 , and πII2 increase in α2 − β2; q
DI
1 and πDI

1 decrease (increase) in α2 − β2 if

γ > 0 (γ < 0); SDI
1 and SDI

2 increase in α1 − β1; q
DI
1 and πDI

1 increase in α1 − β1 if γ < 0.

The effects of integrated chain’s α2 − β2 on the DI equilibrium are qualitatively the same as the

II equilibrium in Theorem 2, because α2 − β2 affects the service levels in the same way as in the II

equilibrium. On the other hand, an increase in α1−β1 raises both S
DI
1 and SDI

2 , and thus, the effects

of α1 − β1 on the DI equilibrium are qualitatively the same as the DD equilibrium in Theorem 3.

4. Equilibrium Supply Chain Structures

The previous section analyzes the firms’ strategic interactions under any given supply chain structure.

In this section, we consider supply chain structure choice game, in which both chains simultaneously

choose to be either integrated or decentralized. We identify the equilibrium supply chain structure

and further analyze the impact of demand uncertainty on the equilibrium choice.

4.1 Comparison of Industry Structures

With the equilibria solved in §§3.2-3.4, we compare the equilibrium service levels, inventory levels,

and profits in this section.

Corollary 5 If γ > 0, then S∗
i < SII

i < SDD
i ; if γ < 0, then SII

i < SDD
i < S∗

i .

The inequality SII
i < SDD

i means that the decentralized chains raise service levels to either reduce

the demand-stealing effect of competing chain’s inventory or increase the demand-stimulating effect

13



of competing chain’s inventory. These are discussed in detail after Theorem 3.

For substitutable products, chain-to-chain competition results in a higher service levels than if the

entire industry is integrated. For complementary products, each supply chain enjoys the demand-

stimulating effect from the other chain’s inventory and thus offers lower service level than if the

industry is integrated.

Next, we compare the total industry profit. Let X denote a supply chain structure, X ∈

{∗, II,DD,DI}, where “∗” denote the integrated industry structure. Let πX denote the expected

profit of the industry under structure X, which can be written as

πX = πX1 + πX2

=
∑

i

[
2(pi − ci)q

X
i − 2(pi − vi)

∫ F−1

i
(SX

i )

0
Fi(u)du

]

=
∑

i

[
2(pi − ci)

η

[
(1− α−i + β−i)F

−1
i (SX

i )− γ−iF
−1
−i (S

X
−i)

]
− 2(pi − vi)

∫ F−1

i
(SX

i
)

0
Fi(u)du

]

=
∑

i

[
2

η

[
(pi − ci)(1− α−i + β−i)− γi(p−i − c−i)

]
F−1
i (SX

i )− 2(pi − vi)

∫ F−1

i
(SX

i
)

0
Fi(u)du

]

Note that S∗
i in (7) can be written as

S∗
i =

(pi − ci)(1− α−i + β−i)− γi(p−i − c−i)

(pi − vi)η
.

Hence, we obtain an expression for the total industry profit:

πX =
∑

i

2(pi − vi) gi(S
X
i ), (29)

where

gi(S)
def
= S∗

i F
−1
i (S)−

∫ F−1

i
(S)

0
Fi(u)du. (30)

The slope of gi(S) is

dgi(S)

dS
= (S∗

i − S)
dF−1

i (S)

dS
. (31)

Using Corollary 5 and (31), it can be seen that when γ > 0, gi(S) strictly decreases in S for

S ∈ [S∗
i , S

DD
i ], and thus, gi(S

II
i ) > gi(S

DD
i ). Therefore, (29) implies that πDD < πDI < πII. On the

other hand, when γ < 0, gi(S) strictly increases in S for S ∈ [SII
i , S

∗
i ], and thus, gi(S

II
i ) < gi(S

DD
i ).

Therefore, (29) implies that πII < πDI < πDD.

The above results are summarized in the following corollary.
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Corollary 6 If γ > 0, then πDD < πDI < πII < π∗. If γ < 0, then πII < πDI < πDD < π∗.

The order of profits in Corollary 6 is consistent with the order of service levels in Corollary 5 in

the following sense: The more the industry service level deviates from the industry optimal service

level, the lower the total industry profit.

The above two corollaries compare the industry-wide service levels and profits. Next, we compare

supply chains’ inventory levels and profits.

Corollary 7 If two products are complements (γ < 0),

qIIi < qDI
i < qDD

i < q∗i ,

πIIi < πDI
i < πDD

i < π∗i .

If two products are substitutes (γ > 0),

qDI
1 < min{qII1 , q

DD
1 }, qDI

2 > max{qII2 , q
DD
2 },

πDI
1 < min{πII1 , π

DD
1 }, πDI

2 > max{πII2 , π
DD
2 }.

When γ > 0, the comparison between qIIi , q
DD
i , and q∗i depends on the demand distribution. To

see this dependence, note that qXi =
1

η

[
(1−α−i+β−i)F

−1
i (SX

i )− γ−iF
−1
−i (S

X
−i)

]
, for X ∈ {∗, II,DD}.

Because γ > 0 and S∗
i < SII

i < SDD
i , the order of qIIi , q

DD
i , and q∗i depends on the shape of F−1

i (S) and

F−1
−i (S) for S ∈ [S∗

i , S
DD
i ]. Similar indeterminacy occurs for ordering the profit under X ∈ {∗, II,DD}.

Corollary 7 reveals that, for complementary products, the individual chain’s inventory and profit

under various structures have the same order as the industry-wide inventory and profit. However,

for substitutable products, although the industry’s profits are ordered as πDD < πDI < πII (see

Corollary 6), individual supply chains’ profits do not have the same order. The integrated chain

in the DI structure has the highest inventory and profit, whereas the decentralized chain in the DI

structure has the lowest inventory and profit.

4.2 Equilibrium Supply Chain Structures

We now consider a supply chain structure game, in which both supply chains simultaneously choose

to be integrated or decentralized, in anticipation of the profits given in the previous sections.

Consider substitutable products (γ > 0) first. Corollary 7 shows that πII1 > πDI
1 , i.e., if chain 2

is integrated, then chain 1 prefers integration as well. By symmetry, if chain 1 is integrated, then

chain 2 also prefers integration. These together imply that II structure is a Nash equilibrium supply
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chain structure.

When γ > 0, Corollary 7 also shows that πDD
2 < πDI

2 , i.e., if chain 1 is decentralized, then chain 2

prefers integration, which asserts that integration is a dominant strategy for each supply chain when

the two products are substitutable.

Next, consider the case of complementary products (γ < 0). Corollary 7 shows that πDI
i < πDD

i ,

i.e., if one chain is decentralized, then the other chain prefers to be decentralized. Furthermore,

πIIi < πDI
i implies that if one chain is integrated, then the other chain still prefers decentralization.

This reveals that decentralization is a dominant strategy for each supply chain when the two products

are complementary.

The above discussions are summarized in the following theorem.

Theorem 8 If two products are substitutable, II is the unique equilibrium supply chain structure. If

two products are complementary, DD is the unique equilibrium supply chain structure.

Corollary 6 implies that for substitutable (complementary) products, the II (DD) structure brings

the industry the highest profit among all duopoly structures, and Theorem 8 further confirms that

the II (DD) structure is the industry’s only equilibrium structure.

The reasons for II and DD to be the equilibria under different product characteristics are explained

below.

Note that when a chain is decentralized, its inventory decision is delayed compared to an inte-

grated chain, because the chain members need to negotiate on the contract terms in the first stage.

This is why in the DI structure, the decentralized retailers choose their inventories after the inte-

grated chain decides inventory levels. In fact, the DI equilibrium coincides with the equilibrium of a

Stakelberg game, in which one chain chooses inventory first, and the other chain follows.

For substitutable products (γ > 0), inventories are strategic substitutes (see equation (22)) and

the first-mover advantage emerges. Therefore, both chains want to be the leader by committing

inventory levels as early as possible, resulting in II being the equilibrium industry structure. Neither

chain has an incentive to decentralize because a delayed inventory decision will bring disadvantage

to the chain when products are substituable.

For complementary products (γ < 0), inventories are strategic complements and the first-mover

advantage disappears. Both supply chains want to be the followers, resulting in DD being the

equilibrium. Neither chain has an incentive to integrate because with two complementary products,

early inventory decision only brings disadvantage to the integrated chain.
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4.3 Impact of Demand Uncertainty

Finally, we explore the impact of demand uncertainty on supply chain’s profits. A common definition

of variability order can be found in Ross (1996). Let X and Y be random variables. X is said to be

more variable than Y , denoted by X ≥v Y , if E[h(X)] ≥ E[h(X)], for all increasing convex h. If X

and Y are nonnegative random variables with distributions F and G respectively, then X ≥v Y if

and only if

∫ ∞

a

(G(x) − F (x))dx ≥ 0, for all a ≥ 0.

In this paper, we use a different stochastic ordering, which we call dispersion. For simplicity, we

focus on the case where distributions and inverse distributions are all continuous functions.

Definition 1 Let X and Y be random variables with cumulative distributions F and G respectively,

and suppose that F , G, F−1 and G−1 are continuous. X is said to be more dispersed than Y , denoted

by X ≥d Y or F ≥d G, if

F−1(b)− F−1(a) ≥ G−1(b)−G−1(a), for all 0 < a < b < 1. (32)

If the inverse distributions are differentiable, then Definition 1 is equivalent to

dF−1(y)

dy
≥
dG−1(y)

dy
, for all y ∈ (0, 1). (33)

That is, X is more dispersed than Y if F−1 is steeper than G−1 (or F is flatter than G) everywhere.

It can be shown that ≥d is a complete order for most of commonly used class of distributions; and

that ≥d coupled with E[X] ≥ E[Y ] implies ≥v, as stated below.

Lemma 9 If X ≥d Y , then

(a) If F (x̂) = G(x̂) = ŷ ∈ (0, 1) for some x̂, then F (x) ≥ G(x) for all x ≤ x̂ and F (x) ≤ G(x) for

all x ≥ x̂; F−1(y) ≤ G−1(y), for all 0 < y ≤ ŷ, and F−1(y) ≥ G−1(y), for all ŷ ≤ y < 1.

(b) If X and Y are non-negative, and E[X] ≥ E[Y ], then X ≥v Y ;

(c) For y ∈ (0, 1),

∫ F−1(y)

0
F (u)du ≥

∫ G−1(y)

0
G(u)du, and

∫ ∞

F−1(y)
(1−F (u))du ≥

∫ ∞

G−1(y)
(1−G(u))du.

To emphasize the dependence on demand uncertainty, we rewrite (29) and (30) as

πX(F1, F2) =
∑

i

2(pi − vi)gi(S
X
i ;Fi),

gi(y;F ) = S∗
i F

−1(y)−

∫ F−1(y)

0
F (u)du.

Now consider two demand systems of the form specified in (1). All parameters are the same

and the mean demands are also the same, except that one system is more dispersed than the other.
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Specifically, the two demand systems are labeled by superscript F and G; we assume ξFij ∼ Fi,

ξGij ∼ Gi, and that E[ξFij ] = E[ξGij ], for i, j = 1, 2.

The following theorem addresses the impact of demand dispersion on the expected supply chain

profit.

Theorem 10 If Fi ≥d Gi, i = 1, 2, then for any structure X, πX(F1, F2) ≤ πX(G1, G2). Further-

more, if Fi ≥d Gi and F−i = G−i, then for any structure X, πXi (F1, F2) ≤ πXi (G1, G2).

We essentially prove that gi(y, F ) decreases when F becomes more dispersed, by exploring the

properties of dispersion order stated in Lemma 9. The theorem shows that the expected industry

profit is lower under larger demand dispersion (with mean demand kept constant). The theorem

also shows that a high own-demand dispersion reduces own chain’s profit. However, the impact of

the other chain’s demand dispersion on own profit is ambiguous. It depends on how the dispersion

is shaped.

Finally, we explore the impact of demand uncertainty on the relative profit when comparing two

different structures.

Theorem 11 If Fi ≥d Gi for i = 1, 2, then for any two structures X1 and X2,

∣∣πX1(F1, F2)− πX2(F1, F2)
∣∣ ≥

∣∣πX1(G1, G2)− πX2(G1, G2)
∣∣ . (34)

For individual supply chain, when γ > 0, F2 ≥d G2 and F1 = G1,

πII1 (F1, F2)− πDI
1 (F1, F2) ≥ πII1 (G1, G2)− πDI

1 (G1, G2); (35)

and when γ < 0, F1 ≥d G1 and F2 = G2,

πDD
2 (F1, F2)− πDI

2 (F1, F2) ≥ πDD
2 (G1, G2)− πDI

2 (G1, G2). (36)

The first part of the theorem shows that the profit differences of different industry structures are

increasing as the demand becomes more uncertain.

Inequality (35) shows that for substitutable products, if the other chain is integrated, the ad-

vantage of integration over decentralization to own chain increases as the demand of the other chain

becomes more dispersed. Inequality (36) shows that for complementary products, if the other chain

is decentralized, the advantage of decentralization over integration to own chain increases as the

demand of the other chain becomes more uncertain.

In summary, a high demand uncertainty reinforces the equilibrium supply chain structure stated
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in Theorem 8.

5. Conclusions

In this paper, we link the analytical marketing literature on channel structures to the operations man-

agement literature on inventory decisions under demand uncertainty. We examine the relations be-

tween supply chain structures, supply chain performance, product substitutability/complementarity,

and demand uncertainty.

We consider three duopoly structures: two integrated chains (II), two decentralized chains (DD),

and a mixed structure with one decentralized chain and one integrated chain (DI). We derive firms’

equilibrium strategies in explicit forms, which allow us to compare different supply chain structures

and further analyze the equilibrium structure choice. We assume fixed prices and focus on inven-

tory competition, in which inventory levels impact retailers’ demands through both stealing and

stimulating effects.

We find that the DD structure always induces higher service levels than the II structure, re-

gardless whether the products are substitutes or complements. This is because in the DD structure,

committing to a higher service level in the first stage can reduce (increase) the competing chain’s

inventory of substitutable (complementary) products in the second stage, which incentivizes both

decentralized chains to raise their service levels higher than in the II structure. In the DI structure,

decentralization delays a chain’s inventory decision, allowing the integrated chain to decide inventory

first. As a result, the decentralized chain’s best service level is the same as a follower in the inventory

competition.

In terms of supply chain profits, we find that for substitutable products, the integrated chain

(leading in inventory decision) in DI structure earns more profit than it would earn in the II and

DD structures, while the decentralized chain in the DI structure earns less than in the other two

structures. Therefore, integration is a dominant strategy for each supply chain when the two products

are substitutable. The equilibrium structure choice is II, which is also the most profitable duopoly

structure (the industry profits are ordered as II > DI > DD). On the other hand, when the products

are complements, the industry profits are ordered as DD > DI > II, and the individual supply chain

profit has the same order. Hence, decentralization is a dominant strategy for each supply chain. The

equilibrium structure choice is DD, which is also the most profitable duopoly structure.

Finally, we find that when demands become more uncertain, the cost of deviating from the
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equilibrium supply chain structure is larger. Thus, demand uncertainty reinforces the equilibrium

supply chain structure.
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Appendix: Proofs

Proof of Theorem 1. The expected excess inventory at retailer (i, j) can be expressed as

E[(qij −Dij(q))
+] =

∫ qij

0
P[Dij(q) ≤ u]du

=

∫ qij

0
Fi

(
u− αiqij + βiqi,−j +

1

2
γ−i(q−i,1 + q−i,2)

)
du

=

∫ F−1

i
(Sij)

0
Fi(u)du. (A.1)

The industry’s profit function in (6) can be written as

∑

i,j

[
(pi − ci)qij − (pi − vi)

∫ qij

0
Fi

(
u− αiqij + βiqi,−j +

1

2
γ−i(q−i,1 + q−i,2)

)
du

]
.

The discussion after (6) reveals the concavity of the objective function. Hence, the optimal inventory

levels are given by the first-order conditions:

pi − ci = (pi − vi)
(
(1− αi)Sij + βiSi,−j

)
+

1

2
(p−i − v−i)γi(S−i,j + S−i,−j), i, j = 1, 2,

where we used the service level defined in (3). This system of equations determines the optimal

service levels in (7), which in turn determine the optimal inventory in (8) by using the relation in

(5). The optimal inventory and service level and the expression in (A.1) lead to the profit in (9).

Next, we prove the monotonicity properties. The optimal service level in (7) can be written as

S∗
i =

(1− α−i + β−i)(pi − ci)− γi(p−i − c−i)

(pi − vi)((1− α1 + β1)(1− α2 + β2)− γ1γ2)
=

(1− α−i + β−i)(pi − ci)− γi(p−i − c−i)

(pi − vi)η
.

We can derive

∂S∗
i

∂(αi − βi)
≥ 0,

∂S∗
−i

∂(αi − βi)
=

(p−i − c−i)γ1γ2 − (1− α−i + β−i)γ−i(pi − ci)

(p−i − v−i)η2
=

−γ−i(pi − vi)γi
(p−i − v−i)η

.

Thus S∗
−i decreases (increases) in αi − βi if γ > 0 (< 0). Consequently, γ−iF

−1
−i (S

∗
−i) decreases in

αi − βi.

Therefore, in equation (8), when αi−βi increases, the denominator decreases while the numerator

increases. Thus q∗i increases in αi − βi.

To examine the relation between q∗i and α−i − β−i, we derive

∂q∗i
∂(α−i − β−i)

= −
γ−i

η

[
q∗−i −

1− α−i + β−i

γ−i

∂F−1
i

∂Si

∂S∗
i

∂(α−i − β−i)
+
∂F−1

−i

∂S−i

∂S−i

∂(α−i − β−i)

]
. (A.2)

All three terms in the brackets are positive, and thus, the sign of the above derivative only depends

on the sign of γ in front of the brackets.
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In equilibrium,

Dij(q
∗) = ξij + (αi − βi)q

∗
i − γ−iq

∗
−i.

Suppose αi − βi increases or γi decreases, and suppose the industry keeps the inventory levels q
∗

unchanged. Then, the above relation suggests that demand Dij will increase, and the industry’s

profit increases. Therefore, if the industry optimally chooses inventory levels in response to the

changes in αi − βi and γi, π
∗ will increase further.

Proof of Theorem 2. The problem in (10) can be written as

max
qi1,qi2

∑

j

[
(pi − ci)qij − (pi − vi)

∫ qij

0
Fi

(
u− αiqij + βiqi,−j +

1

2
γ−i(q−i,1 + q−i,2)

)
du

]
.

The first-order condition is

pi − ci = (pi − vi)
(
(1− αi)Sij + βiSi,−j

)
, j = 1, 2.

Solving the this system of equations, we obtain the optimal service level in (11).

Using (5), the equilibrium inventory levels are given by (12). The expression for chain i’s profit

in (13) can be derived in the same way as in the proof of Theorem 1.

We next prove the monotonicity. If αi − βi increases, then SII
i in (11) increases, which also

increases F−1
i (SII

i ) in (12). At the same time, a higher αi − βi reduces η. Hence, qIIi increases in

αi − βi.

Differentiating qIIi with respect to α−i − β−i and after some algebraic manipulations, we obtain

∂qIIi
∂(α−i − β−i)

= −
γ−i

η

[
∂F−1

−i

∂S−i

∂SII
−i

∂(α−i − β−i)
+ qII−i

]
. (A.3)

All terms in the square bracket are positive, and therefore, if γ > 0 (γ < 0), qIIi decreases (increases)

in α−i − β−i.

From the profit expression in (13), we see that α−i − β−i affects π
II
i only through qIIi . Thus, if

γ > 0 (γ < 0), πIIi decreases (increases) in α−i − β−i.

Finally, we prove the monotonicity of πIIi in αi − βi. Let αi − βi < α̃i − β̃i. Under αi − βi, using

(3), the equilibrium satisfies

Fi

(
(1− αi + βi)q

II
i + γ−iq

II
−i

)
= SII

i .

Under α̃i − β̃i, denote the new equilibrium inventory as q̃ II
1 and q̃ II

2 . Suppose chain −i does choose

the equilibrium inventory q̃ II
−i, but chain i takes a suboptimal strategy qsi to maintain its original
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service level under αi − βi. That is,

Fi

(
(1− α̃i + β̃i)q

s
i + γ−iq̃

II
−i

)
= SII

i .

As we show by (A.3), if γ > 0 (γ < 0), qII−i decreases (increases) in αi − βi. In either case, γqII−i

decreases in αi − βi. Hence, γ−iq
II
−i > γ−iq̃

II
−i. Together with 1− αi + βi > 1− α̃i + β̃i > 0, we have

qsi > qIIi .

Under this suboptimal inventory level qsi , the profit of chain i is

πi = 2(pi − ci)q
s
i − 2(pi − vi)

∫ F−1

i
(SII

i
)

0
Fi(u)du

> 2(pi − ci)q
II
i − 2(pi − vi)

∫ F−1

i
(SII

i
)

0
Fi(u)du = πIIi .

Since a suboptimal inventory for chain i yields a higher profit, the optimal profit πIIi in the equilibrium

must be even higher. The proves πIIi increases in αi − βi.

Proof of Theorem 3. To show the quasi-concavity of the objective function in (16), it suffices to

show that the first-order derivative crosses zero value from above only once. The first-order derivative

with respect to Sc
i is

[
2(pi − ci)(1− α−i + β−i)

η
− 2(pi − vi)S

c
i

]
∂F−1

i (Sc
i )

∂Sc
i

. (A.4)

Because F−1
i (y) is assumed to be strictly increasing in y for y ∈ (0, 1), we have ∂F−1

i /∂Sc
i > 0.

The term in the brackets is strictly decreasing in Sc
i . Hence, as S

c
i increases, the derivative in (A.4)

crosses zero value from above only once. Thus, the objective function in (16) is quasi-concave.

Service level SDD
i in (18) clearly increases in α1 − β1 and α2 − β2.

If γ < 0, then qDD
i in (19) increases in αi−βi, because as αi−βi increases, η decreases, F−1

i (SDD
i )

increases, and −γ−iF
−1
−i (S

DD
−i ) increases.

Similar to (A.2), we can derive

∂qDD
i

∂(α−i − β−i)
= −

γ−i

η

[
qDD
−i +

∂F−1
−i

∂S−i

∂S−i

∂(α−i − β−i)

]
+

1− α−i + β−i

η

∂F−1
i

∂Si

∂SDD
i

∂(α−i − β−i)

Because γ < 0 and SDD
i increases in α−i−β−i, the above derivative is positive, and thus qDD

i increases

in α−i − β−i.

Finally, we prove the monotonicity of πDD
i in αi − βi using the same method as in the proof

of the monotonicity of πIIi in αi − βi in Theorem 2. Let αi − βi < α̃i − β̃i. Under αi − βi, the

equilibrium satisfies Fi

(
(1−αi + βi)q

DD
i + γ−iq

DD
−i

)
= SDD

i . Under α̃i − β̃i, suppose chain −i chooses

the equilibrium inventory q̃ DD
−i , but chain i takes a suboptimal strategy qsi to maintain its original
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service level: Fi

(
(1 − α̃i + β̃i)q

s
i + γ−iq̃

DD
−i

)
= SDD

i . As we have shown, if γ < 0, qDD
−i increases in

αi − βi. Hence, γ−iq
DD
−i > γ−iq̃

DD
−i . Together with 1− αi + βi > 1− α̃i + β̃i > 0, we have qsi > qDD

i .

Under this suboptimal inventory level qsi , the profit of chain i is

πi = 2(pi − ci)q
s
i − 2(pi − vi)

∫ F−1

i
(SDD

i )

0
Fi(u)du

> 2(pi − ci)q
DD
i − 2(pi − vi)

∫ F−1

i
(SDD

i )

0
Fi(u)du = πDD

i .

Since a suboptimal inventory for chain i yields a higher profit, the optimal profit πDD
i in the equi-

librium must be even higher. The proves πDD
i increases in αi − βi when γ < 0.

The monotonicity of πDD
i in α−i − β−i can be shown using the same approach as above.

Proof of Theorem 4. The game dynamics is described and the equilibrium is proved in the paper.

Here, we show the monotonicity results.

The effects of α2 − β2 on the equilibrium follow the same lines of proof as in Theorem 2.

The effects of α1 − β1 on the equilibrium follow the same lines of proof as in Theorem 3.

Proof of Corollary 5. Comparing SII
i in (11) and SDD

i in (18), and noting γ1γ2 > 0, we have the

relation SII
i < SDD

i .

When γ < 0, comparing SDD
i in (18) and S∗

i in (7), we obtain SDD
i < S∗

i .

When γ > 0, we have

S∗
i − SII

i =
pi − ci −

γi(p−i−c−i)
1−α−i+β−i

(pi − vi)(1− αi + βi −
γ1γ2

1−α−i+β−i
)
−

pi − ci
(pi − vi)(1− αi + βi)

=
(pi − ci)(1− α−i + β−i)− γi(p−i − c−i)

(pi − vi)η
−

(pi − ci)(1− α−i + β−i)− γ1γ2
(pi−ci)

(1−αi+βi)

(pi − vi)η

= −
γi

[
(p−i − c−i)−

γ−i(pi−ci)
1−αi+βi

]

(pi − vi)η

= −
γiS

∗
−i

1− αi + βi
< 0.

This proves S∗
i < SII

i when γ > 0.

Proof of Corollary 7. The equilibrium inventory levels in (12), (19), and (27) from Theorems 2-4
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are listed below:

qIIi =
1

η

[
(1− α−i + β−i)F

−1
i (SII

i )− γ−iF
−1
−i (S

II
−i)

]
,

qDD
i =

1

η

[
(1− α−i + β−i)F

−1
i (SDD

i )− γ−iF
−1
−i (S

DD
−i )

]
,

qDI
1 =

1

η

[
(1− α2 + β2)F

−1
1 (SII

1 )− γ2F
−1
2 (SDD

2 )
]
,

qDI
2 =

1

η

[
(1− α1 + β1)F

−1
2 (SDD

2 )− γ1F
−1
1 (SII

1 )
]
.

When γ 6= 0, we have SDD
i > SII

i , i = 1, 2, which immediately leads to the order of qIIi , q
DI
i , and qDD

i

in the theorem.

Next, we prove the order of profits. Theorems 2-4 imply that

πII1 − πDI
1 = 2(p1 − c1)(q

II
1 − qDI

1 ),

πDD
2 − πDI

2 = 2(p2 − c2)(q
DD
2 − qDI

2 ).

Thus, the order of πII1 and πDI
1 is the same as that of qII1 and qDI

1 , and the order of πDD
2 and πDI

2 is

the same as that of qDD
2 and qDI

2 .

We next derive the order of πDI
2 and πII2 . Define an auxiliary function,

ψ(x)
def
= 2(p2 − c2)

−γ1F
−1
1 (SII

1 ) + (1− α1 + β1)x

η
− 2(p2 − v2)

∫ x

0
F2(u)du.

We have

dψ(x)

dx
=

2(p2 − c2)(1 − α1 + β1)

η
− 2(p2 − v2)F2(x), (A.5)

dψ(F−1
2 (SDD

2 ))

dx
=

2(p2 − c2)(1− α1 + β1)

(1− α1 + β1)(1− α2 + β2)− γ1γ2
−

2(p2 − c2)

(1− α2 + β2)−
γ1γ2

1−α1+β1

= 0. (A.6)

Equation (A.5) implies that dψ(x)/dx decreases in x, and it decreases to zero value when x =

F−1
2 (SDD

2 ) in view of (A.6). Hence, dψ(x)/dx ≥ 0 for all x ∈ [F−1
2 (SII

2 ), F
−1
2 (SDD

2 )], and therefore,

ψ(x) increases in x, which leads to

πII2 = ψ(F−1
2 (SII

2 )) ≤ ψ(F−1
2 (SDD

2 )) = πDI
2 .

The order of πDI
1 and πDD

1 can be derived in the same logic with an auxiliary function:

φ(x)
def
= 2(p1 − c1)

(1− α2 + β2)x− γ2F
−1
2 (SD

2 )

η
− 2(p1 − v1)

∫ x

0
F1(u)du.

We can show that φ(x) increases in x for ∈ [F−1
1 (SII

1 ), F
−1
1 (SDD

1 )], and therefore,

πDI
1 = φ(F−1

1 (SII
1 )) ≤ φ(F−1

1 (SDD
1 )) = πDD

1 .
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Proof of Lemma 9.

(a) For any x ≤ x̂, if G(x) = 0, then F (x) ≥ G(x) is already satisfied. If 0 < G(x) ≤ G(x̂) =

ŷ < 1, then by definition, we have F−1(ŷ) − F−1(G(x)) ≥ G−1(ŷ) − G−1(G(x)), or equivalently

x̂ − F−1(G(x)) ≥ x̂ − x, and thus F−1(G(x)) ≤ x or G(x) ≤ F (x). Similarly, we can prove

F (x) ≤ G(x) for all x ≥ x̂.

For y ≤ ŷ, by definition, F−1(ŷ)− F−1(y) ≥ G−1(ŷ)−G−1(y), which implies F−1(y) ≤ G−1(y).

Similarly, for y ≥ ŷ, F−1(y) ≥ G−1(y).

(b) If there does not exist x̂ such that F (x̂) = G(x̂) ∈ (0, 1), then we have either F (x) ≥ G(x) or

G(x) ≥ F (x) for all x ∈ [0,∞). Since E[X] ≥ E[Y ], only the later case stands. Thus
∫∞

a
(G(x) −

F (x))dx ≥ 0, for all a ≥ 0. Hence X ≥v Y .

If there exists x̂, such that F (x̂) = G(x̂) ∈ (0, 1), then part (a) applies. We have G(x)−F (x) ≤ 0

for x ≤ x̂ and G(x) − F (x) ≥ 0 for x ≥ x̂. Thus the function

s(a)
def
=

∫ ∞

−a

G(x) − F (x)dx, a ∈ (−∞, 0)

is increasing and then decreasing in a. E[X] ≥ E[Y ] implies that s(0) =
∫∞

0 G(x) − F (x)dx ≥ 0.

Together with s(−∞) = 0, we have s(a) ≥ 0 for all a ∈ (−∞, 0). This implies X ≥v Y .

(c) Integrating by parts, we have
∫ F−1(x)
0 F (u)du = xF−1(x)−

∫ x

0 F
−1(u)du. Thus,

∫ F−1(x)

0
F (u)du −

∫ G−1(x)

0
G(u)du =

∫ x

0

[
(F−1(x)− F−1(u))− (G−1(x)−G−1(u))

]
du ≥ 0,

where the last inequality is due to the fact that X ≥d Y so that the integrand is always nonnegative.

Similarly, we can prove

∫ ∞

F−1(y)
(1− F (u))du ≥

∫ ∞

G−1(y)
(1−G(u))du.

Proof of Theorem 10. We only need to prove gi(y, Fi) ≤ gi(y,Gi), for all y ∈ (0, 1). Since

E[ξFij ] = E[ξGij ], there must exist x̂ such that F (x̂) = G(x̂) = ŷ.

From Lemma 9 (a) and (c), when y ≤ ŷ, F−1
i (y) ≤ G−1

i (y) and
∫ F−1

i
(y)

0 Fi(u)du ≥
∫ G−1

i
(y)

0 Gi(u)du.

These together imply that

gi(y, Fi) ≤ gi(y,Gi) for y ≤ ŷ.

We note that E[ξFij ] = E[ξGij ] implies that
∫ ∞

0
(1− Fi(u))du =

∫ ∞

0
(1−Gi(u))du,

6



or equivalently,

gi(y, Fi) + (1− γi)F
−1
i (y) +

∫ ∞

F−1

i
(y)

(1− Fi(u))du

= gi(y,Gi) + (1− γi)G
−1
i (y) +

∫ ∞

G−1

i
(y)

(1−Gi(u))du

When y ≥ ŷ, from Lemma 9 (a) and (c), we have F−1(y) ≥ G−1(y) and
∫∞

F−1(y)(1 − Fi(u))du ≥
∫∞

G−1

i
(y)(1−Gi(u))du, Thus gi(y, Fi) ≤ gi(y,Gi) for y ≥ ŷ.

Together, we have gi(y, Fi) ≤ gi(y,Gi) for all y ∈ (0, 1). Hence,

πX(F1, F2) ≤ πX(G1, G2).

To prove the second part regarding to the individual supply chain profit, we express supply chain’s

profit as

πXi (F1, F2) = 2(pi − vi)g̃i(S
X
i , Fi)−

2(pi − ci)γ−i

η
F−1
−i (S

X
−i),

where g̃i(S
X
i , Fi) = SDD

i F−1
i (SX

i ) −
∫ F−1

i
(SX

i )
0 Fi(u)du is similar to gi(y, Fi) and is also decreasing

when F becomes more dispersed while keeping mean constant. Hence the result.

While if F−i becomes more dispersed, the direction of the change of πXi is unclear. It depends on

how the more dispersed distribution is shaped. In particular, it depends on whether x̂ ≤ SX
−i.

Proof of Theorem 11.

∣∣πX1(F1, F2)− πX2(F1, F2)
∣∣ =

∣∣∣∣∣
∑

i

2(pi − vi)

∫ S
X1

i

S
X2

i

dgi(y;Fi)

dy
dy

∣∣∣∣∣

=
∑

i

2(pi − vi)

∫ S
X1

i

S
X2

i

∣∣∣∣
dgi(y;Fi)

dy

∣∣∣∣ dy

=
∑

i

2(pi − vi)

∫ S
X1

i

S
X2

i

|γi − y|
dF−1

i (y)

dy
dy

≥
∑

i

2(pi − vi)

∫ S
X1

i

S
X2

i

|γi − y|
dG−1

i (y)

dy
dy

=
∣∣πX1(G1, G2)− πX2(G1, G2)

∣∣ ,

where the second equality is due to the fact that

∫ S
X1

i

S
X2

i

dgi(y;Fi)

dy
dy are of the same signs for i = 1, 2,

and the inequality follows from (33).
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