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We extend the classical asset-selling problem to include debt repayment obligation, selling capacity

constraint, and Markov price evolution. Specifically, we consider the problem of selling a divisible

asset which is acquired through debt financing. The amount of asset that can be sold per period

may be limited by physical constraints. The seller uses part of the sales revenue to repay the debt.

If unable to pay off the debt, the seller must go bankrupt and liquidate the remaining asset. Our

analysis reveals that in the presence of debt, the optimal asset-selling policy must take into account

two opposing forces: an incentive to sell part of the asset early to secure debt payment and an incentive

to delay selling the asset to capture revenue potential under limited liability. We analyze how these

two forces, originating from debt financing, will distort the seller’s optimal policy.

1. Introduction

Financing asset acquisition and selling the asset is a common practice in many industries. In the

agricultural industry, farm loans are often used to finance farming operations, while crops are sold

to generate revenue, part of which repays the loans. For example, in the Midwest, farmers invest

billions of dollars every year in the corn crop. Corn can be dried and stored for over a year, allowing

farmers to choose when and how much to sell their crop. Farm bankruptcies are common due to

fluctuations in crop prices (Stam and Dixon 2004). In the energy and mining industries, acquisition

of mineral rights, exploration and construction of infrastructure constitute the bulk of the setup

investment that needs to be financed before any revenue from selling the resources can be realized.

For example, a shale gas producer leases land from land owners at a cost that can be as high as

$15,000 per acre, and drilling a well needs 40-80 acres. Drilling, hydraulic fracturing, and well



completion cost $3-7 million per well. Production of gas lasts for 10-20 years, and the producer can

control the rate of production to some extent in order to sell more gas at favorable market prices.

Interestingly, even though the price of natural gas plunged in 2008, instead of cutting back their

production and waiting for the price to recover, producers kept extracting natural gas at a high rate.

Among the reasons for producing more in a dire market is that some firms are forced to produce

under financial pressure of paying off their debts.

Motivated by these industry practices, we aim to explore how debt obligations affect asset-selling

decisions in this paper. We consider a discrete-time problem of selling a divisible asset over a finite

horizon. Prior to the first period, the asset acquisition is partially or fully financed by debt, and

from period 1 through N , the seller faces a stochastically evolving price process and decides in each

period how much of the asset to sell at the ongoing price. The seller uses the sales revenue to repay

the debt and must go bankrupt if unable to meet the debt obligation. We analyze the impact of the

debt level (the amount that the seller owes) and the debt payment schedule (e.g., timing of debt

maturity, pay all at once or in installments) on the seller’s optimal selling strategies.

We also consider selling capacity constraint in our model. Capacity constraint imposes a limit

on the amount of asset that can be sold per period, which is commonly observed in practice, e.g.,

selling natural gas from a well or minerals from a mine is limited by the speed of extraction; selling

farm crops to the market is limited by the labor and transportation capacity. We analyze how the

capacity constraint and debt obligation jointly affect the optimal asset-selling strategies.

1.1 Related Literature

The asset-selling problem, in its basic form as in Karlin (1962), considers selling a single non-divisible

asset when n prices independently drawn from a known distribution are presented to the seller

sequentially. Upon being offered a price, the seller must decide whether to accept the offer and sell

the asset or reject it and wait for the next price, with the goal of maximizing the expected revenue.

This problem has many variants (reviewed shortly), and the family of asset-selling problems has been

well studied in the context of the stochastic search problem since Stigler (1961). A related search

problem is the dowry problem or secretary problem, in which candidates are presented sequentially

to a decision-maker, who can rank candidates without tie and must choose or reject each candidate

based on the relative ranks observed so far, with the goal of maximizing the probability of choosing

the best one.1 The dowry problem and its variants are examined by Gilbert and Mosteller (1966),

Freeman (1983), Chun et al. (2002), among others.

The asset-selling problem is first analyzed by Karlin (1962), who proves that the optimal policy

1In the dowry problem, the payoff is essentially 1 if the best is chosen and 0 otherwise (i.e., nothing but the best),
whereas in the asset-selling problem, the payoff is the selling price.
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is to sell the asset when the offered price exceeds a time-dependent reservation price, which is the

maximum expected price attainable in the remaining periods. Gilbert and Mosteller (1966) compare

reservation prices under various settings and illustrate that the reservation prices are higher if the

right-hand tail of the price distribution is larger. Karlin (1962) also considers an infinite-horizon

setting with a discount factor and finds that the reservation price is a constant. Lippman and McCall

(1976) consider an infinite-horizon job search problem with a fixed cost per search and find that

the optimal policy can be characterized by a reservation wage; see also Telser (1973) for a similar

problem of a buyer searching for the lowest price.

Several authors have considered the problem of selling multiple identical assets (no more than

one in any period) with the objective of maximizing the total expected revenue. Karlin (1962) and

Gilbert and Mosteller (1966) find that the optimal policy is characterized by reservation prices that

depend on the number of remaining assets for sale. Selling multiple assets is actually a special case

of the sequential assignment problem, in which a decision-maker must assign n known quantities

qi, i = 1, . . . , n to sequentially revealed random variables Xj , j = 1, . . . , n (independently drawn

from a known distribution) to maximize the total expected payoff, given that pairing qi with Xj

yields a payoff qiXj . Derman et al. (1972) prove that optimal assignment for X1 is characterized by

n non-overlapping intervals such that if X1 falls in the ith interval, it is optimal to assign the ith

smallest quantity to X1. Albright (1974) further generalizes the problem to allow random arrival

times of Xj. In §4, the asset-selling problem with a selling capacity constraint is related to the

problem of selling multiple assets.

For a divisible asset, if the revenue is linear in the amount sold, selling the asset as a whole

is still optimal. When the payoff function is concave, however, dividing the asset for sale may be

desirable. Derman et al. (1975) analyze a sequential investment problem, which is generalized by

Prastacos (1983). In this problem, an investor with a certain amount of capital decides how much to

invest in each sequentially revealed opportunity. The quality of each opportunity is independently

drawn from a known distribution. Investing q (irreversible) in an opportunity of quality X yields a

return R(q,X). Prastacos (1983) considers the special case of R(q,X) = qX, which is equivalent to

the basic asset-selling problem; he also examines the case when R(q,X) is concave in q and derives

the optimal investment strategy. We consider the problem of selling a divisible asset with debt

obligations and provide the structure of the optimal policy.

A common assumption in most asset selling models is that the sequentially revealed prices are

independently and identically distributed, with only a few exceptions. Karlin (1962) and Lippman

and McCall (1976) allow the price to follow a semi-Markov process and show that the optimal

policy can be characterized by reservation prices that depend on the state of the underlying Markov
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process. Pye (1971) models the price evolution as a random walk and considers a different objective:

to minimize regret.

In this paper, we model price evolution as a Markov process. We assume that the stochastic

properties of the price process are known to the seller. This assumption is also made in the papers

reviewed above, but the asset-selling problem with unknown price distribution has also received

considerable attention. Heuristic methods are developed by Telser (1973), while Bayesian updating

methods are adopted by Rothschild (1974), Albright (1977), and Rosenfield et al. (1983).

There is a continuing interest in the asset-selling problem. Ee (2009) extends the asset-selling

problem to allow random termination of the selling process as well as the options of skipping search

in a period and terminating search by taking a quitting offer. Palley and Kremer (2014) consider

a search problem where the decision-maker knows the distribution of the candidate values but only

observes the relative rankings of the candidates until the search stops. The asset-selling problem

and its variants have broad applications, including the labor market (Rogerson, Shimer, and Wright

2005), kidney allocation (Su and Zenios 2005), land development (Batabyal and Yoo 2005), and

online commerce (Gallien 2006).

A seller with market power can post a selling price and customers whose valuation of the asset

exceeds the selling price will buy. Arnold and Lippman (2001) consider the problem of pricing one

unit of asset in face of Poisson demand with known distribution of valuation. They also extend the

model to selling multiple units over time at posted prices, which is essentially a revenue management

problem. Phillips (2005) provides an extensive review of the literature on pricing and revenue

management. Below, we review a few papers that introduce financial constraints or targets to the

classic revenue management problem studied by Gallego and van Ryzin (1994). Levin et al. (2008)

consider selling multiple units over a finite horizon and analyze the efficient frontier of expected

revenue and the probability of meeting a revenue target. Besbes and Maglaras (2012) introduce

revenue and sales milestone constraints into the revenue management problem and find that the

optimal pricing policy dynamically tracks the most stringent future milestone. Besbes et al. (2018)

analyze a discrete-time version of the revenue management problem under debt obligations. This

paper complements the above research by studying the problem of selling assets at the market price

(as opposed to the posted price) under debt obligations.

The effects of debt on operations have been examined in various contexts. Xu and Birge (2004)

study a newsvendor problem with debt financing and demonstrate the value of integrating production

and financing decisions. Buzacott and Zhang (2004) analyze the interactions between a firm’s

financing and operation decisions when the maximum amount of the loan is based on the firm’s

assets. Kouvelis and Zhao (2012) compare bank financing with supplier financing in a newsvendor
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setting and study the optimal trade credit contracts. Yang et al. (2015) examine how the possibility

of bankruptcy impacts product market competition and various parties in the supply chain. Chod

(2017) analyzes how debt distorts a retailer’s inventory decision and ways to mitigate such distortion.

Iancu et al. (2017) finds that firms shielded by limited liability may use operating flexibility at the

expense of their creditors, resulting in higher borrowing costs. Besbes et al. (2018) analyze the

revenue management problem when the seller has limited liability for a debt repayment at the end

of the horizon. They find that the debt induces the seller to price consistently higher than the

revenue-maximizing policy, and this distortion increases over time, leading to a downward spiral in

the expected revenue. Our research not only considers the effect of limited liability but also captures

the cost of dissolution, as described in §1.2 below.

1.2 Our Contributions

This paper extends the classical asset-selling problem to include debt obligations. We analyze two

distinct effects of debt obligations on optimal asset-selling policies and the interactions between

these effects. The first effect is commonly known as the limited liability effect (Myers 1977, Chod

2017, Besbes et al. 2018, among others). In our context, if the seller is unable to pay off the debt,

a straight bankruptcy procedure allows the seller to liquidate the remaining asset and the debt is

then discharged. Thus, in the adverse price scenarios, bankruptcy protects the seller from carrying

the debt obligations indefinitely. As limited liability curbs the downside loss, the seller tends to

delay selling the asset to capture upside revenue potential. The second effect of debt stems from the

costs associated with bankruptcy. Bankruptcy incurs direct administrative costs and indirect costs

related to the value loss when assets are liquidated (Ang et al. 1982, Bris et al. 2006, Kouvelis and

Zhao 2011). Thus, the presence of bankruptcy cost incentivizes the seller to secure capital early to

pay off the debt. As a result, the seller deviates from the revenue maximizing strategy and sells

(part of) the asset early. To the best of our knowledge, this paper is the first to analyze how limited

liability and bankruptcy cost jointly affect the optimal asset selling strategy. Whether the seller

delays or expedites selling the asset depends on the relative strength of these two effects, which vary

across different debt agreements. When the two effects are equally strong, it is possible that the

optimal asset-selling policy under debt coincides with the revenue-maximizing policy.

We also study how the capacity constraint interacts with the two effects of debt obligations and

find that the capacity constraint weakens both effects. That is, the magnitude of delayed selling

(driven by limited liability) or expedited selling (driven by bankruptcy cost) decreases as the seller’s

capacity constraint tightens. Furthermore, we find that the presence of capacity constraint may

reduce the bankruptcy risk, especially when the capacity constraint is moderate and the debt level

is not too high. This result echoes the negative impact of operating flexibility found by Iancu et al.
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(2017).

This paper establishes the condition under which selling a divisible asset with capacity constraint

is equivalent to the problem of selling multiple non-divisible units. This equivalence allows us to

compare the optimal policies for selling assets at the market price versus selling at the posted price.

In contrast to Besbes et al. (2018) who find that price distortion increases over time, we show that

the distortion on the reservation price may decrease over time, due to the strong downward pressure

on the reservation price toward the end of the horizon.

Finally, we derive most of the results under the assumption that the market price evolves accord-

ing to a Markov process, which is more general than the independent and identical price distributions

assumed in most of the existing literature.

2. Asset Selling Model and Debt Financing

We consider a seller (firm) selling a divisible asset over a T -period horizon T
def
= {1, 2, . . . , T}. Before

the beginning of the horizon (labeled as period 0), the seller makes a one-time investment to acquire

the asset. We assume there is no opportunity to acquire additional assets after period 0. Divisibility

of the asset is not a critical assumption but facilitates analysis. The qualitative results in this paper

continue to hold if the seller has a large number of non-divisible units for sale.

2.1 Asset Selling without Debt Constraints

As a benchmark, we first formulate the problem of selling a divisible asset without debt obligations,

i.e., the seller has enough initial capital (through self-financing or equity) to acquire the asset in

period 0, which is sold over periods 1 to T . The value of any unsold asset at the end of period T

diminishes to zero.

Let xt ∈ [0, 1] denote the amount of asset available for sale at the beginning of period t. Without

loss of generality, the initial size of the asset is normalized to x1 = 1. Let Pt ≥ 0 be the random

selling price in period t, and let pt denote its realization. Upon observing pt at the beginning of

period t, the seller decides the selling quantity in period t, denoted as qt. The maximum amount of

asset that can be sold per period is ℓ ∈ (0, 1], i.e., qt ∈ [0, ℓ]. If ℓ = 1, the seller can sell the entire

asset in one period, which is the case we consider first in §3. The case of ℓ < 1 is studied in §4.

We model the price process {Pt : t ∈ T } as a discrete-time continuous-state Markov process.

Let Ft(· | pt−1) be the cumulative distribution function of Pt conditioning on the realized price pt−1.

We assume E[Pt | pt−1] < ∞, for all pt−1 and all t ∈ T .

Let Ut(xt, pt) be the maximum discounted expected revenue-to-go from period t onward when the

amount of asset for sale at the beginning of period t is xt and the realized price is pt. Let ρ ∈ (0, 1) be
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the seller’s discount factor. Then, Ut(xt, pt) can be determined by the following dynamic program:

Ut(xt, pt) = max
0≤qt≤min(xt,ℓ)

ptqt + ρEtUt+1(xt − qt, Pt+1), t = 1, ..., T, (1)

UT+1(., .) = 0,

where Et is the expectation conditioning on the observed price pt.

2.2 Asset Selling Under Debt Constraints

If the firm cannot raise enough capital for investment, it can finance with a debt in period 0 and

repay the debt using the revenue from selling the asset. Similar to Besbes et al. (2018), we assume a

debt contract is already in place and analyze the selling decision under the debt. Let m (1 ≤ m ≤ T )

be the debt maturity period. The debt payment schedule is denoted as d = {dt : t = 1, . . . ,m},

where dt ≥ 0 is the installment to be paid at the end of period t. If unable to pay the debt, the

seller files for bankruptcy under Chapter 7 and the remaining asset is liquidated.

Let wt denote the seller’s working capital at the beginning of period t. The seller bankrupts in

period t if wt + ptqt < dt, i.e., the sum of current working capital and sales revenue cannot cover

the debt payment. We do not allow debt renegotiation in the model. For the ease of exposition, we

set the initial working capital w1 = 0. This assumption does not change the results qualitatively

but brings notational convenience. Indeed, if w1 > 0, it can be shown that the problem can be

transformed to an equivalent asset-selling problem with w1 = 0 and reduced debt levels.

Let Vt(xt, wt, pt;d), t ≤ m, denote the equity value of the firm (i.e., the value accruing to the

firm’s shareholders) at the beginning of period t, with inventory xt, working capital wt, and realized

price pt. The value function must incorporate the firm’s working capital and revenue-to-go as well as

the debt obligations and bankruptcy risks, which are not reflected in standard asset-selling problems.

To derive the value function, for t ≤ m, let qt
def
= (dt − wt)

+/pt be the minimum sales quantity

needed to pay debt dt in period t. Suppose the seller survives through periods 1 to m− 1. In period

m (debt maturity), the seller can survive if and only if qm ≤ min(xm, ℓ). If this condition holds, the

seller chooses qm ∈
[
qm,min(xm, ℓ)

]
to pay off the debt and continues to sell the remaining asset (if

any) from period m + 1 onward without debt obligation. Thus, for t = m + 1, . . . , T , the optimal

selling policy can be determined by (1). If qm > min(xm, ℓ), the seller is unable to pay off the debt

and goes bankrupt. Thus, the value function in period m is defined as:

Vm(xm, wm, pm;d) =




max
qm≤qm≤min(xm,ℓ)

pmqm +wm − dm + ρEmUm+1(xm − qm, Pm+1), if pmmin(xm, ℓ) + wm ≥ dm,

0, if pmmin(xm, ℓ) + wm < dm.

(2)
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Note that the survival condition pmmin(xm, ℓ) + wm ≥ dm in (2) is equivalent to qm ≤ min(xm, ℓ).

In (2), we assume that the revenue from the liquidation sale cannot cover the debt (i.e., the

indirect bankruptcy cost in terms of the loss in asset value is high), but the seller is shielded by

limited liability. Thus, the equity value diminishes to zero upon bankruptcy, which is a common

assumption in the literature (e.g., Xu and Birge 2004, Boyabatli and Toktay 2011, and Chod and

Zhou 2013). This assumption automatically holds when m = T (recall that unsold asset at the end

of period T has no value). When m < T , we will extend the model in §5 to consider the liquidation

process, which allows the seller to collect residual liquidation revenue after the debt is paid off. The

analysis for the extended model confirms that key qualitative results continue to hold.

In each period t < m, if qt ≤ min(xt, ℓ), the seller sells qt ∈
[
qt,min(xt, ℓ)

]
and uses the revenue

to pay the debt dt. The resulting working capital wt + ptqt − dt grows at its internal rate of return

1/ρ. If qt > min(xt, ℓ), the seller fails to pay dt and goes bankrupt. Thus, the dynamic program for

t < m can be written as

Vt(xt, wt, pt;d) =



max
qt≤qt≤min(xt,ℓ)

ρEtVt+1

(
xt − qt, ρ

−1(wt + ptqt − dt), Pt+1;d
)
, if ptmin(xt, ℓ) + wt ≥ dt,

0, if ptmin(xt, ℓ) + wt < dt.
(3)

Note from (3) that having enough working capital in period t (e.g., wt ≥ dt − ptmin(xt, ℓ)) only

guarantees that bankruptcy does not occur in period t.

Intuitively, if working capital wt is high enough to cover all of the remaining debt payments,

then the equity value should be linear in wt. This intuition is confirmed in part (i) of the following

lemma. Proofs of all lemmas and propositions are included in the Online Appendix. Throughout

this paper, monotonicity and convexity are used in their weak sense.

Lemma 1 In period t ≤ m,

(i) if wt ≥
m∑
i=t

ρi−tdi, then Vt(xt, wt, pt;d) = Ut(xt, pt) + wt −
m∑
i=t

ρi−tdi,

(ii) Vt(0, wt, pt;d) =
(
wt −

m∑
i=t

ρi−tdi

)+
, and

(iii) Vt(xt, wt, pt;d) is increasing in wt and xt, but neither convex nor concave in general.

Lemma 1 suggests that a working capital level at or above
m∑
i=t

ρi−tdi removes bankruptcy risk

from period t onward and, therefore, the seller shall follow the revenue-maximizing policy determined

in (1) from period t onward (Besbes et al. 2018 obtain a similar result in a posted-price setting).

Part (ii) provides a simple formula for the firm’s equity value when the asset is sold out before period

t ≤ m. In general, the value function is neither convex nor concave; see examples in §3.3 and §4.2.
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3. Asset Selling without Capacity Constraint

In this section, we consider the asset-selling problem without capacity constraint, i.e., ℓ = 1. We

first analyze the debt-free asset-selling problem formulated in (1) and then analyze how the debt

obligation and bankruptcy risk alter the optimal selling policy. To this end, we consider the case of

a single debt payment at maturity m = T and show the limited liability effect. Then, we compare

that with the case of a single debt payment at m < T and demonstrate the effect of bankruptcy

cost. We then extend our study to general debt payment schedules.

3.1 Debt-Free Asset-Selling Policy

In the classical problem of selling a non-divisible asset under independently distributed prices (Karlin

1962), the optimal selling policy obeys the one-time stopping rule characterized by a reservation price

(which can depend on t): The asset is sold whenever the price exceeds the reservation price. We

generalize this result for the case of a divisible asset and Markov price evolution.

For each period t, we define Ro
t as the maximum expected revenue from selling all of the asset

after period t, discounted back to period t:

Ro
t = ρE [Ut+1(1, Pt+1) | Pt] . (4)

We sometimes write Ro
t (Pt) to emphasize its dependence on Pt.

Proposition 1 (i) When there is no debt obligation (i.e., d = 0), the optimal asset-selling policy

is to sell the entire asset in period τ o
def
= inf{t : Pt ≥ Ro

t , t ∈ T }.

(ii) Ro
T = 0 and Ro

t = ρEtmax{Pt+1, R
o
t+1} for t = 1, . . . , T − 1. The expected best selling price

discounted to the present, E0ρ
tRo

t , decreases in t.

(iii) (Karlin 1962) If the prices Pt, t ∈ T , are independently and identically distributed (i.i.d.), then

Ro
t is deterministic and decreases in t.

Proposition 1(i) shows that it is optimal to sell the asset all at once. Thus, Ro
t can be interpreted

as the expected discounted best selling price after period t, and the optimal selling time is the first

time when Pt exceeds R
o
t . The iterative relation Ro

t = ρEtmax{Pt+1, R
o
t+1} in part (ii) implies that

the expected discounted best selling price is no lower than the maximum of the discounted expected

prices: Ro
t ≥ max{ρEtPt+1, . . . , ρ

T−t
EtpT}, due to the Jensen’s inequality. Part (iii) shows that our

results are consistent with the classical asset-selling problem under i.i.d. prices.

In the optimal stopping rule in Proposition 1(i), although Ro
t appears to play the role of a

reservation price, Ro
t in general varies with Pt due to the Markov price process, and thus Ro

t is

not a predetermined reservation price. We refer to Ro
t as the critical price for the debt-free case.
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Prior research (see §1.1) typically assumes independent price distributions, in which case Ro
t has a

deterministic value, which is the reservation price.

A natural question is under what conditions there exists a reservation price (that can be prede-

termined) above which the asset should be sold. Proposition 2 answers this question.

Proposition 2 Suppose for every t = 1, . . . , T − 1, (i) Pt+1 stochastically increases in pt, i.e.,

Ft+1(x | pt) decreases in pt, ∀x ≥ 0, and (ii) E[Pt+1 | pt] increases in pt at a rate no greater than 1.

Then, for every t, Ro
t (pt) increases in pt at a rate no greater than ρ ∈ (0, 1), and there exists a

unique p̂t such that pt ≥ Ro
t (pt) if and only if pt ≥ p̂t. The optimal policy is to sell the entire asset

in period τ o = inf{t : Pt ≥ p̂t, t ∈ T }.

Thus far, we have shown that the structure of the optimal policy for selling a divisible asset

under Markov price evolution is similar to that in the classical models. Next, we explore how the

introduction of debt obligation affects the optimal policy, focusing on the changes in the critical

prices. Comparing critical prices is analytically tractable and yields the same insights as comparing

the implicit reservation prices, because a higher critical price corresponds to a higher reservation

price.

3.2 Single Debt Payment at m = T

When the debt requires a single payment at the end of the horizon, i.e., m = T , bankruptcy can

occur only in period T . We will show that the asset is still sold all at once, but the debt obligation

affects the timing of the sale, which can be attributed to the limited liability effect.

Lemma 2 Suppose the debt obligation requires a single payment at the end of period T , i.e., dt = 0

for t = 1, . . . , T − 1 and dT > 0. Then, for t ∈ T ,

(i) Vt(xt, wt, pt;d) is jointly convex in (xt, wt);

(ii) Vt(xt, wt, pt;d) ≥ Ut(xt, pt) + wt − ρT−tdT , with equality holding if wt ≥ ρT−tdT .

The convexity in Lemma 2(i) is essential for the one-time stopping rule to continue to hold, which

will be formalized in Proposition 3. The convexity of the value function implies that inventory has

increasing marginal value. When the entire inventory can be sold in one period, a higher inventory

level reduces bankruptcy probability and, thus, enhances the marginal value of inventory. (In §4.1

when selling capacity exists, inventory exhibits diminishing marginal value.)

In Lemma 2 (ii), if wt ≥ ρT−tdT , i.e., the working capital is sufficient to cover the debt payment,

the seller can simply follow the revenue-maximization strategy in Proposition 1 from period t onward

and obtain an expected value of Ut(xt, pt) + wt − ρT−tdT , which is consistent with Lemma 1(i).

However, if wt < ρT−tdT (bankruptcy risk exists), part (ii) shows that the revenue maximization
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strategy is not necessarily optimal because the limited liability protects the firm’s equity value from

dropping below zero, resulting in Vt(xt, wt, pt;d) > Ut(xt, pt) + wt − ρT−tdT .

The next proposition characterizes the optimal policy and compares it with the debt-free case.

Proposition 3 Suppose the debt obligation requires a single payment at the end of period T , i.e.,

dt = 0 for t = 1, . . . , T − 1 and dT > 0. Then,

(i) There exists a series of critical prices {Rt : t ∈ T } with RT = dT and Rt = ρEtmax{Pt+1, Rt+1},

such that the seller should sell the entire asset in period τ = inf{t : Pt ≥ Rt, t ∈ T }, which is an

optimal stopping time. Upon selling, the revenue will ensure debt payment in period T . If Pt < Rt

for all t ∈ T (i.e., τ = ∞), the seller goes bankrupt at the end of period T .

(ii) When the debt dT increases, the critical price Rt increases almost surely, the stopping time τ

increases almost surely, and the probability of bankruptcy increases. In particular, Rt ≥ Ro
t and

τ ≥ τ o.

(iii) The expected critical price discounted to the present, E0ρ
tRt, decreases in t. If prices Pt, t ∈ T ,

are i.i.d., then Rt is the deterministic reservation price and there exists a debt level d, such that Rt

is constant over time for dT = d, Rt decreases in t for dT < d, and Rt increases in t for dT > d.

Proposition 3(i) confirms that the optimal policy under a single debt payment at m = T still

follows the one-time stopping rule. Furthermore, the relation Rt−1 = ρEmax{Pt, Rt} holds at all

debt levels, including the zero-debt case in Proposition 1.

Importantly, Proposition 3(ii) reveals that debt obligation delays the optimal selling time com-

pared to the debt-free case, and a higher debt results in a longer delay in selling the asset. Intu-

itively, the downside risk of delaying the sale is reduced due to the firm’s limited liability for the

debt, whereas waiting keeps the seller open to the upside potential. Consider a situation in period t

when the seller decides whether or not to sell the asset. A debt-free seller can earn pt by selling now

or earn an expected value of ρEtUt+1(1, Pt+1) by waiting. With debt dT , selling now brings a net

value of pt − ρT−tdT , while waiting brings an expected value of ρEtVt+1(1, 0, Pt+1;d), higher than

ρEtUt+1(1, Pt+1) − ρT−tdT due to Lemma 2(ii), which means the seller has more incentive to wait

than in a debt-free situation. Besbes et al. (2018) also find that limited liability delays sales in a

posted-price setting.

Proposition 3(iii) highlights how debt obligation changes the reservation price for the case of

i.i.d. selling prices. In contrast to the no-debt case in Proposition 1(iii), the reservation price can

increase or decrease in t. At a low debt level, the reservation price decreases in t, because with low

bankruptcy risk, the main driver for asset-selling decision is still to maximize sales revenue. At a

high debt level, the main driver for selling the asset is to cover the debt payment, that is, the selling

price in period t must be at least ρT−tdT (which increases in t) to cover the debt, which causes the
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reservation price Rt to increase over time, as confirmed in Proposition 3(iii). Note that, if there is

no discounting as in Besbes et al. (2018), the reservation price would always decrease over time.

Figure 1 illustrates the results in Proposition 3. Panel (a) shows that the reservation price in any

period increases in the debt level dT (proved in Proposition 3(ii)) and that there exists a threshold

debt level d, above (below) which Rt increases (decreases) in t, as verified in Proposition 3(iii).

Furthermore, observe that the difference between the reservation price under debt and the debt-free

reservation price increases over time. This result echoes the increasing distortion of posted prices in

Besbes et al. (2018), but contrasting results will be discussed in the next sections.

Figure 1: Optimal asset-selling policy under single debt payment: m = T = 10

Pt’s are i.i.d. lognormal and log(Pt) ∼ N (3, 0.5), discount factor ρ = 0.98

(a) Reservation price Rt for various levels of dT

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

�� 	= 0

�

Price

�� 	= 30

�� 	= �̅ = 41.5

�� 	= 50

(b) Cumulative distribution of selling time τ
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Panel (b) shows the cumulative distribution of τ , Pr{τ ≤ t}, which is also the expected amount

of asset sold by period t, Pr{τ ≤ t} · 1 + Pr{τ > t} · 0, because the entire asset is sold at τ . As debt

dT increases, Pr{τ ≤ t} decreases at every t, implying that the seller delays selling the asset.

3.3 Single Debt Payment at m < T

In this case, if the firm is unable to meet the debt payment in period m, it must go bankrupt and

the firm’s value diminishes to zero (see (2)). The optimal decision for the case of m < T is driven

by both the limited liability analyzed in §3.2 and the seller’s desire to avoid costly bankruptcy by

selling a portion of the asset early to pay off the debt.

In this section, we analyze the intricate trade-off between the benefit of limited liability and

bankruptcy cost. In preparation, we first prove the properties of the value function.

12



Lemma 3 Suppose the debt obligation requires a single payment dm at the end of period m < T .

Then, for t ≤ m, Vt(xt, wt, pt;d) is convex in (xt, wt, dm) in region wt ≤ ρm−tdm and is linear in

(xt, wt, dm) in region wt ≥ ρm−tdm. Vt(xt, wt, pt;d) is continuous in (xt, wt, dm).

Figure 2 shows the value function in period m, with explicit expressions derived in the proof of

Lemma 3. Note that the value function is convex in (xm, wm) across regions II and III but is concave

across regions I and II when pm < Ro
m (in Region II the value function increases in wm at slope

Ro
m

pm
> 1, whereas in Region I it increases in wm at unit slope). Backward induction through (3)

preserves the convexity of the value function across regions II and III (wt < ρm−tdm) and linearity

in region I (wt > ρm−tdm), but the value function is not convex in general.

Figure 2: Value function Vm(xm, wm, pm;d), d = (0, . . . , 0, dm)

Region I: working capital wm can cover the debt dm.

Region II: wm is insufficient to cover the debt, and the seller must sell qm = dm−wm

pm

to pay off the debt.

Region III: qm > xm (or pmxm +wm < dm), the firm is unable to pay off the debt and goes bankrupt.
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Lemma 3 establishes the convexity of Vt(xt, wt, pt;d) for two distinct regions wt ≤ ρm−tdm and

wt ≥ ρm−tdm, leading to a different optimal policy structure formalized in Proposition 4. (Lemma 3

includes dm in the convexity, which is needed for studying the effect of debt.)

Before formally presenting the structure of optimal policy, it is useful to understand the effects

of bankruptcy on the firm’s equity value. Upon bankruptcy, the seller loses the future revenue from

selling the remaining asset. This indirect bankruptcy cost decreases the expected equity value. On

the other hand, limited liability protects the equity value from dropping below zero, which enhances

the expected equity value. When m < T , both effects exist and the composite effect on the firm’s

value can be represented by ∆t, defined as

∆t
def
= Vt(1, 0, Pt;d)−

(
Ut(1, Pt)− ρm−tdm

)
, t = 1, . . . ,m+ 1, (5)
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where we set Vm+1(1, 0, Pm+1;d)
def
= 0. We define it up to period m+1 because the selling decisions

up to period m are the focal point of analysis.

Recall Lemma 2(ii) suggests that Vt(1, 0, pt;d) ≥ Ut(1, pt)− ρT−tdT if m = T , because a feasible

policy is to capture the maximum expected revenue Ut(1, pt). However, with debt maturity m < T ,

the inequality Vt(1, 0, pt;d) ≥ Ut(1, pt)−ρm−tdm may not hold because the seller may not be able to

capture the maximum expected revenue Ut(1, pt) due to possibility of bankruptcy. Therefore, ∆t in

(5) is exactly the value of limited liability net the value loss due to bankruptcy cost. When ∆t > 0,

the limited liability effect is stronger than the bankruptcy cost effect; when ∆t < 0, the opposite is

true. The joint effect drives the seller to adopt a new selling strategy described next.

Proposition 4 Suppose the debt obligation requires a single payment dm at the end of period m < T .

(i) There exist two series of critical prices
{(

R
(1)
t , R

(2)
t

)
: 1 ≤ t ≤ m

}
with R

(1)
t ≤ R

(2)
t , 1 ≤ t ≤ m,

such that the seller should make the first sale in period τ = inf{t : Pt ≥ R
(1)
t , 1 ≤ t ≤ m}, which is

an optimal stopping time, and

• If τ ≤ m and pτ ≥ R
(2)
τ , then it is optimal to sell the entire asset in period τ ;

• If τ ≤ m and pτ < R
(2)
τ , then it is optimal to sell qτ = ρm−τdm/pτ in period τ and sell the

remaining asset in period τ ′ = inf{t : Pt ≥ Ro
t , τ < t ≤ T}, where Ro

t is the critical price for

the no-debt case, as defined in (4);

• If pt < R
(1)
t , do not sell. If pt < R

(1)
t for all t ≤ m (i.e., τ = ∞), then the seller bankrupts at

the end of period m.

(ii) In period t ≤ m, if Et∆t+1 < 0, then R
(1)
t < R

(2)
t = Ro

t . If Et∆t+1 ≥ 0, then R
(1)
t = R

(2)
t ≥ Ro

t .

In particular, if Et∆t+1 = 0, then R
(1)
t = R

(2)
t = Ro

t .

Proposition 4(i) prescribes that the optimal policy for the first sale is a control band policy

(illustrated in Figure 3): if the price is sufficiently high (above R
(2)
t ), sell the entire asset; if the price

is very low (below R
(1)
t ), sell nothing; if the price falls in between the two critical prices, it is optimal

to sell part of the asset to secure debt payment, i.e., sell qτ = ρm−τdm/pτ to earn ρm−τdm which

will cover the debt dm. Thus, in this middle belt, a higher price pτ leads to (counter-intuitively)

a lower selling quantity qτ , which is driven by the strategy of generating revenue to cover the debt

payment exactly.

Part (ii) of the proposition further illuminates that, depending on which of the two forces is

stronger, the critical prices and the width of the control band are significantly different. When

the bankruptcy cost dominates the limited liability benefit (Et∆t+1 < 0), the seller has a strong

incentive to avoid costly bankruptcy by selling part of the asset early to secure the debt payment.

This partial sale, if it occurs, will be earlier than the sale in the no-debt case because the critical
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Figure 3: Optimal asset-selling policy under single debt payment: T = 10, m = 7

Pt’s are i.i.d. lognormal and log(Pt) ∼ N (3, 0.5), ρ = 0.98, dm = 10
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(1)
t is below Ro

t , which is the critical price for the no-debt case defined in (4). After this partial

sale removes the bankruptcy risk, the seller will sell the remaining asset using the same policy as

in the no-debt case. Therefore, no sale will occur later than the selling time in the debt-free case.

This strategy is in sharp contrast with the delayed selling decision when the debt matures in period

T (see Proposition 3).

On the other hand, when the limited liability effect is stronger (Et∆t+1 > 0), the seller does not

worry about the bankruptcy cost as much. Consequently, the partial selling region disappears. But,

as in the m = T case, bankruptcy shields the seller from the downside risk, which delays the sales

compared to the no-debt case (R
(1)
t = R

(2)
t ≥ Ro

t ).

Proposition 4 proves that the sales should be expedited (delayed) if Et∆t+1 < 0 (> 0), i.e., the

bankruptcy cost effect is stronger (weaker) than the limited liability effect. A natural question is

what drives the relative magnitude of these two effects. One may expect that Et∆t+1 is monotone

in the debt level dm, since a higher debt leads to more benefit from limited liability. It turns out

that Et∆t+1 is not monotone and relates to dm in a manner depicted in Figure 4.

When dm = 0, Lemma 1(i) implies that Vt+1(1, 0, Pt+1;0) = Ut+1(1, Pt+1) for t < m, and thus

Et∆t+1 = 0. Figure 4 illustrates that Et∆t+1 decreases in dm first, which is proved next.

Lemma 4 For all t < m, we have lim
dm→0+

∂Et∆t+1

∂dm
≤ 0. Furthermore, the inequality is strict if

Pr{Pt < Ro
t} > 0 for all t ≤ m.

In Lemma 4, the condition Pr{Pt < Ro
t} > 0 for all t < m is satisfied by most price processes. In

particular, the condition is satisfied if the support of the price distribution includes low price levels.
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Figure 4: Relationship between Et∆t+1 and debt level
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Thus, Et∆t+1 strictly decreases in dm for small dm, as shown in Figure 4. Therefore, for small debt

levels, Et∆t+1 < 0, implying that the effect of bankruptcy cost is more pronounced than the limited

liability effect.

Figure 4 shows that Et∆t+1 is convex in dm because Vt(1, 0, pt;d) is convex in dm for all dm ≥ 0

(proved in Lemma 3). In fact, Et∆t+1 decreases in dm first and then increases above zero. Therefore,

there exists a threshold debt level, denoted as Dt and also marked in Figure 4, such that the effect

of bankruptcy cost dominates when dm ∈ (0,Dt), while the limited liability effect dominates when

dm > Dt. We formally state this result in the following proposition.

Proposition 5 Suppose the debt obligation requires a single payment dm at the end of period m < T ,

and Pr{Pt < Ro
t} > 0 for all t ≤ m.

(i) In period t ≤ m, there exists a unique threshold debt level Dt > 0 (which may depend on Pt),

such that Et∆t+1 > 0 and strictly increases in dm if dm > Dt, and Et∆t+1 < 0 if dm ∈ (0,Dt).

(ii) If dm ≥ Dt, then R
(1)
t = R

(2)
t ≥ Ro

t , and R
(1)
t and R

(2)
t increase in dm. If dm ∈ (0,Dt), then

R
(1)
t increases in dm and R

(2)
t = Ro

t is invariant with respect to dm. The optimal first-selling time τ

(defined in Proposition 4) increases in dm for dm > 0.

(iii) If prices Pt, t ∈ T , are independent (not necessarily i.i.d.), then R
(1)
t and R

(2)
t are deterministic,

and the threshold debt level is a constant: Dt ≡ Ro
m for 1 ≤ t ≤ m, where Ro

m is the reservation

price in period m for the no-debt case (defined in (4)).

If dm ≥ Ro
m, then R

(1)
t = R

(2)
t ≥ Ro

t , 1 ≤ t ≤ m, and τ ≥ τ o, where equalities hold if dm = Ro
m.

If dm < Ro
m, then R

(1)
t < R

(2)
t = Ro

t , 1 ≤ t ≤ m, and τ ≤ τ o.

Proposition 5 (i) and (ii) imply that, if the leverage is large (dm > Dt), then the limited liability

effect dominates and drives the seller’s optimal policy—the seller should delay sales (i.e., the critical
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prices are higher than the no-debt case) and the seller will either sell the entire asset or sell nothing

in each period; see Figure 5, where R
(1)
t = R

(2)
t for dm ≥ Dt. The critical prices increase in the debt

level, which means that the seller will delay selling the asset even longer.

Figure 5: Effect of debt level on critical prices: T = 10, m = 7

Pt’s are i.i.d. lognormal and log(Pt) ∼ N (3, 0.5), ρ = 0.98, showing critical prices in period t = 6
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If the leverage is small (dm < Dt), the effect of bankruptcy cost is stronger than the limited

liability effect. Bankruptcy cost incentivizes the seller to sell a portion of the asset to pay off the

debt so that the firm becomes free of the constraint, as illustrated in Figure 5. As the debt level dm

reduces from Dt, R
(1)
t decreases (while R

(2)
t remains constant), hence the price region for a partial

sale expands. This implies that the seller is more likely to sell a portion of the asset earlier for paying

a smaller debt, contradicting the intuition that a larger debt will force the seller to sell prematurely.

It is a smaller debt that incentivizes early sales.

The above results are in stark contrast with the upward (posted) price distortion found in Besbes

et al. (2018). The effect of bankruptcy cost, when it dominates, reduces the reservation price below

the revenue-maximizing reservation price. In a special situation when dm = Dt, R
(1)
t = R

(2)
t = Ro

t ,

which means ithat the optimal policy under the debt coincides with the revenue-maximizing policy.

This is because the incentive to delay sales due to limited liability balances with the incentive to

expedite sales due to the bankruptcy cost. We note that the effect of bankruptcy cost can also exist

in the posted-price setting: A model similar to the debt amortization model in Besbes et al. (2018)

but including revenue loss after bankruptcy can also produce downward price distortion.

Note that Dt generally depends on Pt, while the debt level dm is predetermined in period 0.

Hence, it is possible that in some periods there are two distinct critical prices (R
(1)
t < R

(2)
t ) while
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in some other periods there is only one critical price (R
(1)
t = R

(2)
t ). Interestingly, when prices are

independently (not necessarily identically) distributed, Dt becomes a constant and equal to Ro
m, as

stated in Proposition 5(iii). Consequently, the optimal policy is characterized by either two distinct

reservation prices (when dm < Ro
m) or a single reservation price (when dm ≥ Ro

m).

3.4 General Debt Payment

We now generalize the analysis to settings where the debt financing agreement requires multiple

payments. Specifically, the debt obligation requires k installments paid in periods m1,m2, . . . ,mk

(1 ≤ m1 < · · · < mk ≤ T ), where mk ≡ m is the last payment period. That is, the debt payment

schedule d has dt > 0, for t ∈ {m1, . . . ,mk}, and dt = 0 otherwise.

We show that, if the seller makes a sale in any period, the seller should sell either all of the

remaining asset or an amount that exactly covers the debt payments required for the current and next

several consecutive periods. We prove this optimal policy structure for the first sale in Proposition 6

and then prove the structural equivalence between the first sale and future sales in Proposition 7.

As before, let τ denote the time of the first sale, taking values in {1, . . . ,m1,∞}. Note that the

seller must make the first sale on or before period m1 to avoid bankruptcy.

Proposition 6 Suppose the debt obligation requires k installments paid in periods m1,m2, . . . ,mk

(1 ≤ m1 < · · · < mk ≤ T ).

(i) There exists a series of critical prices {R†
t : 1 ≤ t ≤ m1}, such that the first selling time

τ = inf{t : Pt ≥ R†
t , 1 ≤ t ≤ m1}. If Pt < R†

t for all t ≤ m1 (i.e., τ = ∞), then the seller bankrupts

at the end of period m1.

(ii) If τ ≤ m1, the optimal quantity to sell is q∗τ ∈ {1} ∪
{ j∑

i=1
ρmi−τdmi

/pτ : j = 1, . . . , k
}
.

Proposition 6 prescribes that the first sale is triggered by a critical price similar to that for the

case of a single debt payment. When the selling opportunity occurs, the seller should either sell the

entire asset or sell an amount that generates a revenue of
j∑

i=1
ρmi−τdmi

to secure exactly the first j

installments.

Proposition 7 Suppose the first sale is made in period τ ≤ m1 to pay off exactly j installments.

Then, the remaining asset, h ≡ 1−
j∑

i=1
ρmi−τdmi

/pτ , should be sold as follows:

(i) If j = k (all debt is paid off), sell h using the debt-free policy in Proposition 1;

(ii) If j < k, sell h by solving an asset-selling problem with T − τ periods and k − j remaining debt

payments. The size of the remaining asset is scaled to one and the asset price is scaled to P̃t = hPt;

the initial wealth of this (T − τ)-period problem is zero.

Proposition 7 effectively decomposes the original problem into a sequence of structurally identical
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asset-selling problems, each of which covers a certain number of installments.

Under a single debt payment, Proposition 4 shows that the optimal policy is characterized by a

control band. With multiple debt payments, one may conjecture two opposite forces influencing the

optimal policy as the price changes. As pt increases, the revenue earned from selling a given quantity

increases. As the price becomes more favorable to the seller, this force will induce selling more and

earn greater revenue. Doing so will enable the seller to raise more working capital (for multiple debt

payments) and provide more flexibility for future sales as the seller becomes less constrained by the

payment schedule. On the other hand, Proposition 6(ii) implies that the optimal sales quantity is

not a continuous function in price. In fact, the sales quantity is from a finite set of candidates,

q∗t =
j∑

i=1
ρmi−tdmi

/pt, each representing the amount that is equal to a partial sum of current and

future payments. As the price increases, it suffices to sell less to cover the same debt payments

(i.e., the quantity is an inverse function of pt) and keep more assets to wait for a higher price in the

future. Consequently, depending on which of the two forces is stronger, the number of installments

that the seller secures through a partial sale can non-monotonically change in price.

In general, characterizing the complete structure of optimal policy is difficult. This is, in part,

because the value function is only convex in q within
j∑

i=1
ρmi−tdmi

/pt and
j+1∑
i=1

ρmi−tdmi
/pt. As pt

increases, the amount of asset that needs to be sold decreases non-linearly in pt. In order to evaluate

the exact impact of a price change, we need to evaluate how multiple convex functions change in

pt at extreme points. This depends on payment structure, discount factor, working capital level,

and, most importantly, price process. Numerically, we find that the impact of limited liability and

bankruptcy cost on the optimal selling policy is consistent with the previous finding. We present

the numerical results together with the capacitated selling case in §4.2.3.

4. Asset Selling with Capacity Constraint

In this section, we examine the asset-selling policies under capacity constraint, i.e., the maximum

amount sold in one period is limited by ℓ < 1. We show that when the debt requires a single payment

at the end of the horizon, the asset-selling problem is equivalent to the problem of selling multiple

non-divisible units. We characterize how the debt affects optimal policies and compare them with

the policies in the previous section and in the literature.

4.1 Debt-Free Asset-Selling Policy

When there is no debt, the seller balances the revenue in the current period with the expected value

of asset in the future when deciding the sales quantity. Proposition 8 shows the optimal policy.

Proposition 8 Suppose the selling capacity ℓ < 1 and there is no debt. Then, it is optimal to divide
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the asset into n
def
=

⌈
1
ℓ

⌉
pieces,2 with n− 1 pieces of size ℓ and a remainder of size r ≡ 1− (n− 1)ℓ.

The optimal sequential selling policy is characterized by critical prices {Ro
t,i : t ∈ T , i = 1, . . . , n}

with Ro
t,i increasing in i and representing the critical price for the i-th sale.

(i) For given i ∈ {1, . . . , n}, suppose that the seller has sold i− 1 times before period t. In period t,

(a) If the remainder r has been previously sold, it is optimal to sell ℓ if Pt ≥ Ro
t,i and sell nothing

otherwise;

(b) If the remainder r has not been previously sold, it is optimal to sell ℓ if Pt ≥ Ro
t,i+1, sell r if

Ro
t,i ≤ Pt < Ro

t,i+1, and sell nothing otherwise.

(ii) For i = 1, . . . n−1, the critical prices satisfy Ro
T,i = 0 and Ro

t,i = ρEtmedian{Pt+1, R
o
t+1,i, R

o
t+1,i+1}

for t = 1, . . . , T − 1. Furthermore, Ro
t,n = Ro

t for all t, i.e., the critical price for the last sale is the

same as the critical price for the case without capacity constraint.

Proposition 8(i) reveals that the asset-selling problem with capacity constraint is equivalent to

selling n non-divisible assets, where n is the least number of sales the seller must make to sell the

entire asset. The optimal policy features a sequence of critical prices that characterize when and

how much of the asset is sold for each of the n sales. In addition, when the seller has not sold the

remainder r, a control band with two critical prices are in play: If the price is moderately favorable,

then sell the remainder; if the price is more favorable, sell the maximum quantity ℓ.

Proposition 8(ii) details the properties of the critical prices. Note that because Ro
t,n = Ro

t , it

satisfies the relation proved in Proposition 1: Ro
t,n = ρEtmax{Pt+1, R

o
t+1,n}, which means that Ro

t,n

is the expected best selling price after period t. The median relation in part (ii) can be written as

Ro
t,i = ρEtmin

{
max{Pt+1, R

o
t+1,i}, R

o
t+1,i+1

}
, which means that Ro

t,i is the expected (n + 1 − i)-th

best selling price after t. Indeed, the first sale is triggered by Pt ≥ Ro
t,1, i.e., the current price exceeds

the expected n-th best selling price in the future.

Note that, if prices are i.i.d., the above problem of selling n portions of the asset is essentially a

stochastic assignment problem first studied by Derman et al. (1975). We generalize their results to

Markov price process and further derive the relations between critical prices in the simplest form.

This generation is possible because the value function ρEtUt+1(xt+1, Pt+1) is concave and piecewise

linear in xt+1, and the slopes for the n segments (0, ℓ], (ℓ, 2ℓ], . . . , ((n−2)ℓ, (n−1)ℓ], and ((n−1)ℓ, 1]

are Ro
t,n ≥ Ro

t,n−1 ≥ · · · ≥ Ro
t,1, respectively (see the proof of Proposition 8).

When prices are i.i.d., Rt,i’s are deterministic reservation prices, illustrated in Figure 6. If a sale

does (does not) occur in a period, the reservation price increases (decreases) in the next period; see

the sample path of reservation price in Figure 6. This resembles the posted-price changes in Gallego

2 ⌈x⌉ is the ceiling function that gives the smallest integer greater than or equal to x.
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Figure 6: Critical prices under selling capacity ℓ = 0.2, without debt

Pt’s are i.i.d. and log(Pt) ∼ N (3, 0.5), ρ = 0.98, Rt,i is the reservation price for the i-th sale
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and van Ryzin (1994). The key difference is that posted prices are no lower than the one-period

revenue-maximizing price and there may be unsold items at the end of the horizon, whereas the

reservation price drops to zero whenever the number of remaining periods is equal to the number of

unsold units.

4.2 Asset Selling Under Debt and Capacity Constraint

As we did in §3, we examine the case with a single payment at the end of planning horizon (m = T ),

and extend our study to a single payment at m < T as well as general cases. Because capacity

constraint introduces additional analytical difficulty, the case with general debt schedule is not

tractable. However, our numerical analysis will demonstrate that even under capacity constraints,

limited liability and bankruptcy cost remain to drive the optimal asset-selling policy.

4.2.1 Single Debt Payment at m = T

Parallel to §3.2, we analyze the selling policy when the debt requires a single payment at m = T .

Lemma 5 generalizes Lemma 2, and Proposition 9 characterizes the optimal policy.

Lemma 5 Suppose dt = 0 for t = 1, . . . , T − 1 and dT > 0. Then, for t ∈ T , Vt(xt, wt, pt;d) is

convex in (xt, wt) in each of the n regions: xt ∈
[
(j − 1)ℓ, min{jℓ, 1}

]
, j = 1, 2, . . . , n =

⌈
1
ℓ

⌉
.

Figure 7 shows the equity value as a function of inventory in the last two periods under selling

capacity ℓ = 1/3. The piecewise convexity is evident. In addition, notice that VT−1(
1
3 )− VT−1(0) ≤

VT−1(
2
3 )− VT−1(

1
3 ) and VT−1(

2
3) − VT−1(

1
3) ≥ VT−1(1) − VT−1(

2
3), which means that inventories in

discrete units of size 1
3 may exhibit increasing marginal values (due to limited liability) or decreasing

marginal values (due to limited capacity).

Proposition 9 Suppose dt = 0 for t = 1, . . . , T − 1 and dT > 0. Then, it is optimal to divide the
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Figure 7: Piecewise convexity of the value function

ℓ = 1/3, Pt’s are i.i.d. and log(Pt) ∼ N (3, 0.5), ρ = 1
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asset into n =
⌈
1
ℓ

⌉
pieces, with n− 1 pieces of size ℓ and a remainder of size r ≡ 1− (n− 1)ℓ. There

exists a series of critical prices {Rc
t : t ∈ T } such that

(i) It is optimal to make the first sale in period τ c
def
= inf{t : Pt ≥ Rc

t , t ∈ T }. If Pt < Rc
t for all

t ∈ T (i.e., τ c = ∞), then the seller bankrupts at the end of period T .

(ii) If τ c < T , then in period τ c + 1, the seller faces a problem that is structurally identical to

the original problem, with T − τ c periods and a reduced debt d′T =
(
dT − q∗τcpτc/ρ

T−τc
)+

, where

q∗τc ∈ {ℓ, r} is the optimal first sales quantity.

Proposition 9 shows that the seller divides the asset into multiples of ℓ (plus a remainder) for

sale; this division is exactly the same as in the no-debt case. The first sale occurs when the price

exceeds a critical price Rc
t . We next examine how the debt level affects this critical price.

Besbes et al. (2018) find that the upward (posted) price distortion increases over time. In the

absence of selling capacity, we also find that (critical) price distortion increases over time if m = T

(see Figure 1(a)). However, in the presence of selling capacity, the distortions exhibit intricate

patterns. Consider a case with capacity ℓ = 0.5, under which the asset is divided into two halves for

sale. Figure 8(a) shows that, only at low debt levels, the distortion increases over time (compare the

critical prices for dT = 0 and dT = 30). At high debt levels, the (marginal) distortion is decreasing

over time (compare the critical prices for dT = 50 and dT = 70). Panel (b) illustrates this pattern

using more refined debt levels and confirms that as dT increases, the time period with the largest

marginal distortion on critical price shifts from late in the horizon to early in the horizon.

The above pattern can be explained by understanding two distinct forces on price distortion.

First, as debt maturity nears, the limited liability has a stronger upward effect on the critical price.

This force leads to increasing distortion over time. Second, because the selling capacity prevents
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Figure 8: Optimal policy for the first sale with capacity ℓ = 0.5

Pt’s are i.i.d. lognormal and log(Pt) ∼ N (3, 0.5), ρ = 0.98, m = T = 10
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the asset from being sold all in one period, when the selling time is running out and no sale has

yet occurred, there is a downward pressure on the critical price. (Indeed, the critical price drops to

zero in period 9 to ensure the first sale occurs.) Under a high debt level, the second force becomes

particularly strong when the first force tries to raise the critical price. The net effect is reduced

critical price distortion over time.

We now examine how the debt is covered for the case of ℓ = 0.5. If the revenue from the first sale

covers the debt, the second sale will follow the debt-free selling policy in Proposition 1, otherwise the

second sale will follow Proposition 3. Figure 8(c) shows that under a relatively small debt (dT < d̂T

in the figure), the seller may sell nothing even if selling some of the asset can cover the debt. Under

a relatively large debt (dT > d̂T ), however, the firm may sell part of the asset even if it is insufficient

to cover the debt. Besbes et al. (2018) find that the seller uses a single sale to cover a small debt and

uses multiple sales to cover a large debt. Our result differs in that for any given debt, it is always

possible to cover the debt with one sale as long as the realized price is high enough.
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Figure 9: Impact of selling capacity on bankruptcy probability and expected sales

Pt’s are i.i.d. lognormal and log(Pt) ∼ N (3, 0.5), ρ = 0.98, m = T = 10
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Finally, we examine the impact of capacity constraint on bankruptcy risk. The conventional

wisdom is that an operationally constrained firm has a higher default risk. Figure 9(a) shows that,

at a high debt level (e.g., dT = 50), a tighter capacity constraint (lower ℓ) indeed increases the

probability of bankruptcy. Interestingly, for medium debt levels (dT = 20 and 30), when capacity

tightens (ℓ decreases), the bankruptcy probability first decreases and then increases. This is because

when a capacity constraint is present but not too tight, the optimal policy would encourage selling

the asset earlier while still capturing high prices, leading to a lower default risk. Figure 9(b) confirms

that the asset is indeed sold earlier when capacity constraint tightens. When the capacity constraint

becomes very tight, however, the seller may have to sell the asset at adverse prices, resulting in a

higher probability of falling short of covering the debt. Lastly, for very low debt levels (dT = 10),

without capacity constraint, the bankruptcy probability is 0.01, whereas a capacity constraint (re-

gardless how tight) effectively removes the bankruptcy risk. This is because the capacity constraint

induces early sales, which can easily cover a small debt. The above finding suggests that when nei-

ther the debt obligation nor selling capacity is stringent, additional selling capacity only encourages

the firm to engage in riskier strategies. Iancu et al. (2017) also find a negative effect of operating

flexibility under debt.
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4.2.2 Single Debt Payment at m < T

With a capacity constraint and a debt maturing before the end of the horizon, the value function

Vt(xt, wt, pt;d) may not be continuous in wt and pt. To see the discontinuity, suppose in period

t < T , the seller has inventory xt ∈ (ℓ, 1] and consider the cases in (3): if wt + ptℓ < dt, bankruptcy

occurs and Vt(xt, wt, pt;d) = 0, whereas if wt+ ptℓ = dt, the seller can survive by selling at capacity

ℓ, leading to Vt(xt, wt, pt;d) = ρEtVt+1(xt − ℓ, 0, Pt+1;d) > 0, where xt − ℓ > 0 and wt+1 = 0.

Hence, the value function is discontinuous at wt + ptℓ = dt when xt ∈ (ℓ, 1].

In addition, recall that, when there is no capacity constraint, the value function is convex or

piecewise convex (Lemmas 2 and 3). However, §4.1 shows that the capacity constraint alone leads

to a concave value function. With both debt and capacity constraints in period t, the value function

is neither concave or convex. Hence, debt and capacity constraints render the problem analytically

intractable in general. Therefore, we resort to numerical analysis to analyze the selling policy,

focusing on the essential tradeoff between the benefit of limited liability and the value loss due to

bankruptcy cost.

We will show that the two effects resulting from limited liability and bankruptcy cost, respec-

tively, still exist when capacity constraint is present. Figure 10 compares the expected cumulative

sales with and without the capacity constraint. Panel (a) considers the same setting as in Figure 5

without the capacity constraint. In the small debt case (dm = 10), the expected cumulative sales in

any t ≤ m exceeds the sales amount in the debt-free case, which means sales are expedited, whereas

in the large debt case (dm = 40), the sales are delayed.

Figure 10: Expected amount of asset sold by period t: single debt payment at m = 7

Pt’s are i.i.d. lognormal and log(Pt) ∼ N (3, 0.5), ρ = 0.98, T = 10
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With the capacity constraint of ℓ = 0.2, panel (b) reveals that the presence of bankruptcy cost

expedites selling under a small debt. On the other hand, under a large debt, the sale is delayed

due to the limited liability effect. However, the magnitude of expedition or delay is much smaller

compared to that in panel (a). Intuitively, the capacity limit ℓ = 0.2 means that the asset needs to

be sold over at least five periods within a 10-period planning horizon. This constraint significantly

reduces the flexibility in expediting or delaying sales.

4.2.3 General Debt Payment

We further study more general debt payment schemes. Recall from §3.4 that the general debt

payment cases are analytically difficult to solve; moreover, as discussed in §4.2.2, the capacity

constraint renders the value function discontinuous. Despite these complications, we can numerically

demonstrate that the key insights still hold for the general case.

Specifically, we consider the case with two equal debt payments at m1 = 4 andm2 = 7. Figure 11

presents the expected cumulative sales before the first installment is due. Consistent with all the

previous results, asset selling is expedited under small debts and is delayed under large debts.

However, as the capacity constraint tightens, these effects are subdued.

Figure 11: Expected amount of asset sold by period t: two debt payments at m1 = 4 and m2 = 7

Pt’s are i.i.d. lognormal and log(Pt) ∼ N (3, 0.5), ρ = 0.98, T = 10
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4.2.4 Asset-Selling Example under General Price Process: Selling Natural Gas

In this section, we apply our model to the industrial setting of selling natural gas. We employ a

commodity price model with parameters estimated from the natural gas price data.

Suppose the asset is 106 MBtu (million British thermal units) of natural gas. Following the
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literature on commodity asset pricing (Schwartz 1997, Jaillet et al. 2004), we model the logarithmic

price log Pt as an Ornstein-Uhlenbeck process in continuous time:

d log Pt = κ(µ− log Pt)dt+ σdZt. (6)

where µ is long-term average level, κ is the mean-reversion rate, σ is volatility and Z is a standard

Brownian motion. We calibrate model (6) using weekly Henry Hub natural gas spot price data,

which is obtained from the Energy Information Administration and covers 157 observations from

May 1, 2015 to April 30, 2018 (www.eia.gov/dnav/ng/hist/rngwhhdW.htm). We use the maximum

likelihood estimation (see Tang and Chen 2009 and Sørensen 2004) to estimate the parameters and

obtain κ = 0.129, µ = 0.994, and σ = 0.097.

A discrete-time sample of the price in (6) is an AR(1) process:

log(Pt+1) = η + β log(Pt) + ǫt, (7)

where each period t represents a ∆t = 4 weeks, β = e−κ∆t = 0.879, η = (1 − β)µ = 0.120, and

ǫt ∼ N(0, σ2) is the i.i.d. random shock with σ = σ
√

1−e−2κ∆t

2κ = 0.153.

The expected sales over time are illustrated in Figure 12 under three debt levels: $0, $1 million,

and $2.5 million, with and without selling capacity. The results are reassuring. We see that the

natural gas sales can be delayed (or advanced) if limited liability (or bankruptcy cost) effect is

dominant. Observe that the attenuation effect of capacity constraint is smaller in Figure 12 compared

to Figure 10. This is because the benefit of waiting for a more favorable selling price is lower under

Figure 12: Example of selling natural gas: single debt payment at m = 7

log(Pt) follows the process in (7) with P1 having the stationary distribution, ρ = 0.99, T = 10
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sticky prices (e.g., Markov price process in (7)) than under independent prices. Similarly, the effect

of bankruptcy cost is weaker when the prices are sticky. Thus, the attenuation effect of capacity

constraint is less pronounced.

5. Extension and Conclusions

5.1 Asset Liquidation

The model in (2)-(3) assumes that when the firm is unable to make a scheduled debt repayment, it

goes into bankruptcy and the payoff is zero. Although zero payoff upon bankruptcy is a common

assumption in the literature, it is an extreme case. In practice, if the firm files for bankruptcy

under Chapter 7, the remaining asset is liquidated and the revenue from liquidation sales will be

distributed to the creditors up to the total unpaid debt. The residual revenue will be returned to

the firm’s shareholders. In this section, we extend our basic model to include the liquidation process

and compare it with the results in the previous sections.

Formally, suppose the firm goes bankrupt in period t with unpaid debt (drt , dt+1, . . . , dm) and

unsold asset xt+1. The remaining asset xt+1 will be sold to maximize the expected revenue over

a liquidation period from t + 1 up to t + L < T , where L is the length of the liquidation period.

We assume that the remaining asset xt+1 can still be sold at the market price, but the liquidation

period is typically short and, therefore, the expected revenue from liquidation sales is lower than if

the remaining asset were sold over the remaining planning horizon. This reduction in asset value is

a form of the indirect bankruptcy cost.

Liquidating xt+1 follows a revenue-maximization policy that is structurally the same as the policy

for (1) but with a different discount rate. For simplicity, we assume no discounting for the revenues

from liquidation sales. Let {qBs : s = t + 1, . . . , t + L} be a sequence of random variables denoting

the revenue-maximization selling quantities over L periods of liquidation sales.

The total liquidation revenue
t+L∑

s=t+1
Psq

B
s will be used first to pay the remaining debt drt+

m∑
s=t+1

ds.

The firm is expected to obtain the following residual payoff at the end of period t+ L:

Ωt+1(xt+1, d
r
t ;d) = Et

[
t+L∑

s=t+1
Psq

B
s − drt −

m∑
s=t+1

ds

]+
. (8)

We can rewrite the firm’s optimization problem in (2)-(3) as follows:

Vm(xm, wm, pm;d) = max
{

max
qm∈[0,min(xm,ℓ)]∩[qm,∞)

pmqm + wm − dm + ρEmUm+1(xm − qm, Pm+1),

max
qm∈[0,min(xm,ℓ,qm)]

ρLΩm+1(xm − qm, dm − pmqm − wm;d)
}
, (9)

28



Vt(xt, wt, pt;d) = max
{

max
qt∈[0,min(xt,ℓ)]∩[qt,∞)

ρEtVt+1

(
xt − qt, ρ

−1(wt + ptqt − dt), Pt+1;d
)
,

max
qt∈[0,min(xt,ℓ,qt)]

ρLΩt+1(xt − qt, dt − ptqt − wt;d)
}
, for t < m. (10)

Note that if additional direct and indirect bankruptcy costs (such as administrative cost, legal

fees, and reputation loss) are included in (8) so that the residual payoff to the firm is zero: Ωt+1 = 0,

then (9)-(10) are equivalent to (2)-(3).

In (9)-(10), the inner problem of choosing qt ∈ [0,min(xt, ℓ)]∩ [qt,∞) finds the value of the firm

if surviving,3 while the inner problem of choosing qt ∈ [0,min(xt, ℓ, qt)] finds the value of the firm if

bankrupt. The firm chooses the greater of the two maximum values. Therefore, the optimal selling

strategies for (9)-(10) involves a new feature: the firm may choose to go bankrupt even if it can

survive. This is because in some situations, survival brings very low payoff, e.g., when qt = xt ≤ ℓ,

the firm has to sell all the remaining asset in order to survive, yielding zero payoff, whereas going

bankrupt may yield a positive expected payoff to the firm.

Figure 13: Optimal asset-selling policy under a single debt payment

Same parameters as in Figure 3, liquidation period L = 1, debt dm = 10
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Figure 13 compares the optimal policy under zero residual payoff with the optimal policy under

a positive residual payoff. Specifically, if the firm goes bankrupt in period m = 7, the asset is

liquidated in period 8. The dashed curves in Figure 13 correspond to the critical prices under zero

residual payoff, also shown in Figure 3. With a positive residual payoff, both critical prices are higher.

This is because when the effect of bankruptcy cost is weakened by the presence of residual payoff,

3If qt > min(xt, ℓ), then the feasible set [0,min(xt, ℓ)]∩ [qt,∞) = ∅, implying that the firm cannot survive and the
maximum value is −∞ by convention.
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the limited liability effect becomes more prominent. Importantly, the policy structure identified in

Proposition 4 is robust: when the price falls between the two critical prices (solid curves), the firm

should sell a portion of the asset to cover its debt exactly. Furthermore, in this example the lower

critical prices are consistently below Ro
t , the critical price without debt, indicating that part of the

asset is sold earlier than the debt-free case.

At maturity, with no residual payoff, the lower critical price is R
(1)
m = dm. With a residual payoff,

however, this critical price is lifted by an amount that is exactly the residual payoff. This is because

in period m, the firm will choose to go bankrupt if the expected liquidation value of the asset is

higher than the ongoing selling price pm.

5.2 Concluding Remarks

The classical asset-selling problem has seen applications in practice where one or several non-divisible

assets are to be sold. This paper extends the classical asset-selling problem to incorporate several

realistic features, including debt obligations, selling capacity constraints, and Markov price evolution.

With these features, our study has broadened the scope of the classic asset-selling problem and laid

the foundation for its application to more industrial contexts.

We show that the Markov nature of the price process does not qualitatively change the structure

of the optimal asset-selling policies. The debt obligation, however, can structurally alter the optimal

policy. The debt obligation introduces the new tradeoff between the benefit of limited liability and

the value loss due to bankruptcy cost. This tradeoff results in a new selling strategy, either to secure

the debt payment early to avoid costly bankruptcy or to delay the sale as the bankruptcy curbs the

downside risk. When both capacity constraint and debt obligation are present, we show that the

key effects derived from the uncapacitated case—small debts expedite sales while large debts delay

sales—continue to hold, although these effects are attenuated by the capacity constraint.

References

Albright, S. C. 1974. Optimal sequential assignments with random arrival times. Management Science

21(1) 60–67.

Albright, S. C. 1977. A bayesian approach to a generalized house selling problem. Management Science

24(4) 432–440.

Ang, J. S., J. H. Chua, J. J. McConnell 1982. The administrative costs of corporate bankruptcy: A note. The

Journal of Finance 37(1) 219–226.

Arnold, M. A., S. A. Lippman 2001. The analytics of search with posted prices. Economic Theory 17(2) 447–

466.

Batabyal, A. A., S. J. Yoo 2005. Indivisibility and divisibility in land development over time and under

uncertainty. Journal of environmental management 76(2) 185–190.

30



Besbes, O., C. Maglaras 2012. Dynamic pricing with financial milestones: feedback-form policies.Management

Science 58(9) 1715–1731.

Besbes, O., D. A. Iancu, N. Trichakis 2018. Dynamic pricing under debt: Spiraling distortions and efficiency

losses. Management Science 64(10) 4572–4589.

Boyabatli, O., L. B. Toktay 2011. Stochastic capacity investment and flexible vs. dedicated technology choice

in imperfect capital markets. Management Science 57(12) 2163–2179.

Bris, A., I. Welch, N. Zhu 2006. The costs of bankruptcy: Chapter 7 liquidation versus Chapter 11 reorgani-

zation. The journal of finance 61(3) 1253–1303.

Buzacott, J. A., R. Q. Zhang 2004. Inventory management with asset-based financing. Management Science

50(9) 1274–1292.

Chod, J. 2017. Inventory, risk shifting, and trade credit. Management Science 63(10) 3207–3225.

Chod, J., J. Zhou 2013. Resource flexibility and capital structure. Management Science 60(3) 708–729.

Chun, Y. H., R. D. Plante, H. Schneider 2002. Buying and selling an asset over the finite time horizon: A

non-parametric approach. European Journal of Operational Research 136(1) 106–120.

Derman, C., G. J. Lieberman, S. M. Ross 1972. A sequential stochastic assignment problem. Management

Science 18(7) 349–355.

Derman, C., G. J. Lieberman, S. M. Ross 1975. A stochastic sequential allocation model. Operations Research

23(6) 1120–1130.

Ee, M.-S. 2009. Asset-selling problem with an uncertain deadline, quitting offer, and search skipping option.

European Journal of Operational Research 198(1) 215–222.

Freeman, P. R. 1983. The secretary problem and its extensions: A review. International Statistical Review

51(2) 189–206.

Gallego, G., G. van Ryzin 1994. Optimal dynamic pricing of inventories with stochastic demand over finite

horizons. Management science 40(8) 999–1020.

Gallien, J. 2006. Dynamic mechanism design for online commerce. Operations Research 54(2) 291–310.

Gilbert, J. P., F. Mosteller 1966. Recognizing the maximum of a sequence. Journal of the American Statistical

Association 61(313) 35–73.

Iancu, D. A., N. Trichakis, G. Tsoukalas 2017. Is operating flexibility harmful under debt?. Management

Science 63(6) 1730–1761.

Jaillet, P., E. I. Ronn, S. Tompaidis 2004. Valuation of commodity-based swing options. Management science

50(7) 909–921.

Karlin, S. 1962. Stochastic models and optimal policy for selling an asset. InK. J. Arrow, S. Karlin and H. Scarf

eds. Studies in Applied Probability and Management Science. Stanford University Press. pp. 148–158.

Kouvelis, P., W. Zhao 2011. The newsvendor problem and price-only contract when bankruptcy costs exist.

Production and Operations Management 20(6) 921–936.

Kouvelis, P., W. Zhao 2012. Financing the newsvendor: Supplier vs. bank, and the structure of optimal trade

credit contracts. Operations Research 60(3) 566–580.

Levin, Y., J. McGill, M. Nediak 2008. Risk in revenue management and dynamic pricing. Operations Research

56(2) 326–343.

31



Lippman, S. A., J. McCall 1976. The economics of job search: A survey. Economic Inquiry 14(2) 155–189.

Myers, S. C. 1977. Determinants of corporate borrowing. Journal of financial economics 5(2) 147–175.

Palley, A. B., M. Kremer 2014. Sequential search and learning from rank feedback: Theory and experimental

evidence. Management Science 60(10) 2525–2542.

Phillips, R. L. 2005. Pricing and revenue optimization. Stanford University Press.

Prastacos, G. P. 1983. Optimal sequential investment decisions under conditions of uncertainty. Management

Science 29(1) 118–134.

Pye, G. 1971. Minimax policies for selling an asset and dollar averaging. Management Science 17(7) 379–393.

Rogerson, R., R. Shimer, R. Wright 2005. Search-theoretic models of the labor market: A survey. Journal of

economic literature 43(4) 959–988.

Rosenfield, D. B., R. D. Shapiro, D. A. Butler 1983. Optimal strategies for selling an asset. Management

Science 29(9) 1051–1061.

Rothschild, M. 1974. Searching for the lowest price when the distribution of prices is unknown. Journal of

Political Economy 82(4) 689–711.

Schwartz, E. S. 1997. The stochastic behavior of commodity prices: Implications for valuation and hedging.

The journal of finance 52(3) 923–973.

Sørensen, H. 2004. Parametric inference for diffusion processes observed at discrete points in time: a survey.

International Statistical Review 72(3) 337–354.

Stam, J. M., B. L. Dixon 2004. Farmer bankruptcies and farm exits in the United States, 1899-2002. Economic

Research Service, U.S. Department of Agriculture. Agriculture Information Bulletin No. 788.

Stigler, G. J. 1961. The economics of information. Journal of Political Economy 69(3) 213–225.

Su, X., S. A. Zenios 2005. Patient choice in kidney allocation: A sequential stochastic assignment model.

Operations Research 53(3) 443–455.

Tang, C. Y., S. X. Chen 2009. Parameter estimation and bias correction for diffusion processes. Journal of

Econometrics 149(1) 65–81.

Telser, L. G. 1973. Searching for the lowest price. American Economic Review 63(2) 40–49.

Xu, X., J. R. Birge 2004. Joint production and financing decisions: Modeling and analysis. Available at SSRN

652562.

Yang, S. A., J. R. Birge, R. P. Parker 2015. The supply chain effects of bankruptcy. Management Science

61(10) 2320–2338.

32



Online Appendix

Proof of Lemma 1: (i) We prove by induction. At the beginning of period t = m, if the seller is

able to pay off the debt, i.e., wm ≥ dm, then qm
(dm−wm)+

pm
= 0, and (2) simplifies to

Vm(xm, wm, pm;d) = wm − dm + max
0≤qm≤min(xm,ℓ)

pmqm + ρEmUm+1(xm − qm, Pm+1)

= wm − dm + Um(xm, pm).

Thus, the statement in (i) holds in period m. Suppose it holds in period t+ 1, for some t < m. In

period t, if wt ≥
m∑
i=t

ρi−tdi, then qt = 0 and (3) simplifies to

Vt(xt, wt, pt;d) = max
0≤qt≤min(xt,ℓ)

ρEtVt+1

(
xt − qt, ρ

−1(wt + ptqt − dt), Pt+1;d
)

= max
0≤qt≤min(xt,ℓ)

ρEt

[
Ut+1(xt − qt, Pt+1) + ρ−1(wt + ptqt − dt)−

m∑
i=t+1

ρi−t−1di

]

= wt −
m∑
i=t

ρi−tdi + max
0≤qt≤min(xt,ℓ)

ptqt + ρEtUt+1(xt − qt, Pt+1)

= wt −
m∑
i=t

ρi−tdi + Ut(xt, pt),

where the second equality follows from the induction hypothesis because

ρ−1(wt + ptqt − dt) ≥ ρ−1
( m∑

i=t

ρi−tdi − dt

)
=

m∑
i=t+1

ρi−t−1di.

Hence, the statement in (i) holds for all t ≤ m.

(ii) When the asset is sold out before period t ≤ m, the revenue-to-go is zero. If the seller is able to

pay off the debt, i.e., wt ≥
m∑
i=t

ρi−tdi, then the firm’s equity value is wt−
m∑
i=t

ρi−tdi. If wt <
m∑
i=t

ρi−tdi,

because no asset remains, the seller will certainly go bankrupt and thus Vt(0, wt, pt;d) = 0.

(iii) The monotonicity of Vm(xm, wm, pm;d) in wm follows directly from (2); the monotonicity of

Vt(xt, wt, pt;d) in wt can be inductively proved using (3).

Proof of Proposition 1: (i) We inductively prove the following two statements for all periods:

(a) It is optimal to sell the remaining asset xt in period t if pt ≥ Ro
t = ρEtUt+1(1, Pt+1);

(b) Ut(xt, pt) = Ut(1, pt)xt.

In the final period T , because any unsold inventory is worthless (i.e., UT+1 = 0), it is optimal

to sell everything on hand. Hence, statement (a) is true with Ro
T = 0 = ρUT+1. Furthermore,

UT (xT , pT ) = pTxT , which leads to statement (b): UT (xT , pT ) = UT (1, pT )xT .

Suppose statements (a) and (b) hold in period t+1, for some t < T . Then, in period t, problem
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(1) becomes

Ut(xt, pt) = max
0≤qt≤xt

ptqt + ρEtUt+1(xt − qt, Pt+1)

= max
0≤qt≤xt

ptqt + ρEtUt+1(1, Pt+1)(xt − qt)

= max
0≤qt≤xt

(pt −Ro
t )qt +Ro

txt,

where Ro
t = ρEtUt+1(1, Pt+1). Because the above maximand is linear in qt, the optimal decision is

q∗t =





xt, if pt ≥ Ro
t ,

0, if pt < Ro
t ,

which proves statement (a). Under the above q∗t , we obtain

Ut(xt, pt) = max{pt, R
o
t }xt. (A.1)

Thus, we can write Ut(xt, pt) = Ut(1, pt)xt, as in statement (b). The induction is complete.

Because the above policy of selling all or nothing is optimal for all periods, it is optimal to sell

the entire asset at once, at the time when pt ≥ Ro
t occurs.

(ii) We have shown Ro
T = 0 and Ut(1, pt) = max{pt, R

o
t } in part (i). Thus,

Ro
t−1 = ρEt−1Ut(1, Pt) = ρEt−1 max{Pt, R

o
t }.

Furthermore, ρt−1Ro
t−1 = ρtEt−1 max{Pt, R

o
t} ≥ ρtEt−1R

o
t .

(iii) When prices are independently distributed, Ro
t = ρEtUt+1(1, Pt+1) no longer depends on pt

and assumes a deterministic value. In such case, we can prove that Ro
t ≥ Ro

t+1 by induction. This

inequality holds for t = T − 1 since RT = 0. Suppose Ro
t ≥ Ro

t+1 for some t < T . Then, we have

Ro
t−1 −Ro

t = ρEmax{pt, R
o
t } − ρEmax{Pt+1, R

o
t+1} ≥ 0,

where the inequality is due to the identical and independent distributions of pt’s and the induction

hypothesis. This completes the induction.

Proof of Proposition 2: The existence of a unique reservation price p̂t follows immediately from

the statement that Ro
t (pt) increases in pt at a rate no greater than ρ < 1. We inductively prove this

statement.

Because Ro
T = 0, the statement clearly holds with p̂T = 0. For t < T , suppose Ro

t+1(pt+1)

increases in pt+1 at a rate no greater than ρ.

Define h(p) = max{p,Ro
t+1(p)}. By Proposition 1(ii), we have Ro

t (pt) = ρE
[
h(Pt+1) | pt

]
.

First, we see that Ro
t (pt) increases in pt, because Pt+1 stochastically increases in pt and h(·) is

an increasing function.

Second, we prove the upper bound on the rate of increase. Consider two arbitrary prices pat < pbt .
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Condition (i) in the proposition means that Pt+1|p
a
t is stochastically smaller than Pt+1|p

b
t . By the

coupling property of stochastic ordering, there exist a probability space and two random variables

P a and P b on this space such that P i has the same distribution as Pt+1|p
i
t, for i = a, b, and P a ≤ P b

almost surely. The induction hypothesis and the definition of h(p) imply that h(p) increases in p at a

rate no greater than 1. Thus, we have h(P b)−h(P a) ≤ P b−P a almost surely. Taking expectations

on both sides, we have E[h(P b)]− E[h(P a)] ≤ E[P b]− E[P a], which leads to

E[h(Pt+1) | p
b
t ]− E[h(Pt+1) | p

a
t ] ≤ E[Pt+1 | pbt ]− E[Pt+1 | pat ] ≤ pbt − pat ,

where the last inequality is due to condition (ii) in the proposition. Multiplying ρ throughout, we

have Ro
t (p

b
t)−Ro

t (p
a
t ) ≤ ρ(pbt − pat ). This completes the induction.

Proof of Lemma 2: (i) We prove by induction. In period m = T , equation (2) simplifies to

VT (xT , wT , pT ;d) = (pTxT + wT − dT )
+,

which is jointly convex in (xT , wT ). Suppose Vt+1(xt+1, wt+1, Pt+1;d) is convex in (xt+1, wt+1) for

some t < T . Then in period t, because there is no immediate debt obligation (dt = 0), we have

qt = 0 and (3) leads to

Vt(xt, wt, pt;d) = max
0≤qt≤xt

ρEtVt+1

(
xt − qt, ρ

−1(wt + ptqt), Pt+1;d
)
. (A.2)

By the induction hypothesis, the objective function in (A.2) is convex in qt. Therefore, the optimal

decision q∗t is either 0 or xt, and we can write Vt(xt, wt, pt;d) as the maximum of two functions:

Vt(xt, wt, pt;d) = ρmax
{
EtVt+1(xt, ρ

−1wt, Pt+1;d), EtVt+1(0, ρ
−1(wt + ptxt), Pt+1;d)

}
. (A.3)

Because both functions inside of maximization in (A.3) are convex in (xt, wt), the maximum of them

is also convex in (xt, wt). This completes the induction.

(ii) We prove by induction. The statement holds in period T because

VT (xT , wT , pT ;d) = (pTxT + wT − dT )
+ ≥ pTxT + wT − dT = UT (xT , pT ) + wT − dT .

Suppose the statement holds in period t+1 for some t < T . Then, applying the induction hypothesis

to (A.2), we have

Vt(xt, wt, pt;d) ≥ max
0≤qt≤xt

ρEt

[
Ut+1(xt − qt, Pt+1) + ρ−1(wt + ptqt)− ρT−t−1dT

]

= wt − ρT−tdT + max
0≤qt≤xt

ptqt + ρEtUt+1(xt − qt, Pt+1)

= wt − ρT−tdT + Ut(xt, pt),

which completes the induction. Lemma 1(i) proves that the equality holds when wt ≥ ρT−tdT .

Proof of Proposition 3: (i) The proof of Lemma 2 shows that, for any given xt, the optimal
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selling quantity q∗t is either 0 or xt. Thus, given x1 = 1, it is optimal to sell the entire asset at once,

i.e., q∗t ∈ {0, 1} for t = 1, . . . , T . Next, we characterize the optimal selling time.

At the beginning of period T , if the asset is not yet sold (xT = 1) and if pT ≥ dT , then the seller

should sell the asset and earn pT − dT . If pT < dT , the seller goes bankrupt regardless it sells the

asset or not. Hence, RT = dT as stated in part (i) of the proposition.

At the beginning of period t < T , if the asset is not yet sold (xt = 1), then the seller has wt = 0

and (A.3) leads to

Vt(1, 0, pt;d) = max{ρEtVt+1(1, 0, Pt+1;d), ρEtVt+1(0, ρ
−1pt, Pt+1;d)}

= max{ρEtVt+1(1, 0, Pt+1;d), ρ(ρ
−1pt − ρT−t−1dT )

+}

= max{ρEtVt+1(1, 0, Pt+1;d), pt − ρT−tdT }, (A.4)

where the second equality is due to Lemma 1(ii) and we omit ( )+ in the last equality because the

first term in (A.4) EtVt+1 ≥ 0. Therefore, the seller should sell the asset if pt ≥ Rt, where

Rt = ρT−tdT + ρEtVt+1(1, 0, Pt+1;d). (A.5)

If we define VT+1 = 0, then (A.5) is also valid for t = T because RT = dT . Following from (A.5),

we have

Rt−1 = ρT−t+1dT + ρEt−1Vt(1, 0, Pt ;d)

= ρT−t+1dT + ρEt−1 max{ρEtVt+1(1, 0, Pt+1 ;d), Pt − ρT−tdT }

= ρ(ρT−tdT ) + ρEt−1 max{Rt − ρT−tdT , Pt − ρT−tdT }

= ρEt−1 max{Rt, Pt}

where the second equality follows from (A.4) and the third equality is due to (A.5).

If pt < Rt throughout the entire horizon, then the seller forgoes selling opportunity from periods

1 to T − 1 and is unable to pay off the debt in period T and thus goes bankrupt.

(ii) We can utilize the relation Rt(pt) = ρEtmax{Pt+1, Rt+1} to write

Rt(pt, dT ) = ρEtmax{Pt+1, ρEt+1 max{Pt+2, . . . ρET−1 max{PT , dT } . . . },

where we emphasize the dependence of Rt on dT . Thus, for any realized price pt, Rt(pt, dT ) increases

in dT . Consequently, the probability of bankruptcy Pr{Pt < Rt for all t ∈ T } increases in dT .

To show that τ increases in dT almost surely, consider two debt levels with daT < dbT . The

previous result shows that Ra
t ≤ Rb

t almost surely, for t ∈ T . Now compare

τa = inf{t : Pt ≥ Ra
t , t ∈ T } and τ b = inf{t : Pt ≥ Rb

t , t ∈ T }.

In every period t, if pt ≥ Rb
t , then we must have pt ≥ Ra

t . In other words, pt exceeds Ra
t no later
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than it exceeds Rb
t . Therefore, τ

a ≤ τ b, which proves that τ increases in dT almost surely.

Because the debt-free results in Proposition 1 is a special case with dT = 0, the above mono-

tonicity results suggest Rt ≥ Ro
t and τ ≥ τ o.

(iii) The relation Rt = ρEt max{Pt+1, Rt+1} in part (i) implies that ρtRt = ρt+1
Et max{Pt+1, Rt+1} ≥

ρt+1
EtRt+1. Thus, the expected discounted critical price decreases over time.

If Pt’s are i.i.d., then Rt defined in (A.5) is independent of pt and thus deterministic. Consider

the difference Rt−1 − Rt = ρEmax{Pt, Rt} − ρEmax{Pt+1, Rt+1}. Because Pt and Pt+1 are i.i.d.,

Rt−1 ≥ Rt if and only if Rt ≥ Rt+1. Therefore, the series {R1, R2, . . . , RT } is either (weakly)

increasing or decreasing.

Consider an auxiliary function f(d) = ρEmax{d, Pt} − d, which strictly decreases in d because

ρ < 1. Furthermore, f(0) > 0 and f(d) < 0 when d ≫ pt. By continuity and strict monotonicity of

f(d), there exists a unique d such that f(d) = 0 or ρEmax{d, Pt} = d.

When dT = d, the relations RT = dT and Rt−1 = ρEmax{Rt, Pt} imply that Rt = d for all t ∈ T .

When dT < d, we have f(dT ) > 0 or ρEmax{dT , Pt} > dT or RT−1 > RT . Thus, Rt decreases in t.

Similarly, when dT > d, Rt increases in t.

Proof of Lemma 3: When wt ≥ ρm−tdm, Lemma 1(i) implies that Vt(xt, wt, pt;d) = Ut(xt, pt) +

wt − ρm−tdm. Furthermore, Ut(xt, pt) = Ut(1, pt)xt, as shown in the proof of Proposition 1. Thus,

Vt(xt, wt, pt;d) is linear in (xt, wt, dm) in region wt ≥ ρm−tdm.

We inductively prove the convexity of Vt(xt, wt, pt;d) in region wt ≤ ρm−tdm. In period t = m,

this region becomes wm ≤ dm. To pay off the debt dm, the seller must sell at least qm = dm−wm

pm
.

If xm < qm, i.e., pm < dm−wm

xm
, the seller goes bankrupt and Vm(xm, wm, pm;d) = 0.

If xm ≥ qm, i.e., pm ≥ dm−wm

xm
, equation (2) becomes

Vm(xm, wm, pm;d) = max
qm≤qm≤xm

pmqm + wm − dm + ρEmUm+1(xm − qm, Pm+1)

= max
qm≤qm≤xm

(pm −Ro
m)qm +Ro

mxm +wm − dm

where the last equality follows from Ut(xt, pt) = Ut(1, pt)xt by the proof of Proposition 1 and

ρEmUm+1(1, Pm+1) = Ro
m. The above maximization leads to q∗m = qm or q∗m = xm depending on

whether pm < Ro
m or not. Combing the above cases, the value function can be written as

Vm(xm, wm, pm;d) = max
{
pm, Ro

m

}(
xm − dm−wm

pm

)+
, for wm ≤ dm. (A.6)

Thus, Vm(xm, wm, pm;d) is jointly convex in (xm, wm, dm) in region wm ≤ dm. See Figure 2 in the

paper for an illustration.

Suppose for some t < m, Vt+1(xt+1, wt+1, pt+1;d) is jointly convex in (xt+1, wt+1, dm) for wt+1 ≤
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ρm−t−1dm. We now prove the convexity of Vt(xt, wt, pt;d) in (xt, wt, dm) when wt ≤ ρm−tdm.

Because no debt payment is required before period m, equation (3) simplifies to

Vt(xt, wt, pt;d) = max
0≤qt≤xt

ρEtVt+1

(
xt − qt, ρ

−1(wt + ptqt), Pt+1;d
)
. (A.7)

Let us define qdt
def
= (ρm−tdm − wt)/pt, the minimum selling quantity in period t that ensures debt

payment in period m. Since wt ≤ ρm−tdm, we have qdt ≥ 0. We solve the problem in (A.7) by

considering two cases: qdt ≥ xt and qdt < xt.

If qdt ≥ xt, when qt varies in [0, xt], we have wt+1 = ρ−1(wt+ptqt) ≤ ρ−1(wt+ptq
d
t ) = ρm−t−1dm.

Then, the induction hypothesis implies that the objective function in (A.7) is convex in qt and,

consequently, the potential optimal solutions are qt = 0 and qt = xt. However, qt = xt leads to

Vt+1(0, ρ
−1(wt + ptxt), Pt+1;d) = 0 by Lemma 1(ii). Hence, q∗t = 0 in this case.

If qdt < xt, we divide the range [0, xt] into two intervals [0, qdt ] and [qdt , xt]. When qt ∈ [0, qdt ],

using the same logic as in the case of qdt ≥ xt, the objective function in (A.7) is convex in qt.

When qt ∈ [qdt , xt], we have wt+1 ≥ ρm−t−1dm. Then, Lemma 1 and the proof of Proposition 1 lead

to Vt+1(xt+1, wt+1, Pt+1;d) = Ut+1(1, Pt+1)xt+1 + wt+1 − ρm−t−1dm. Consequently, the objective

function in (A.7) is linear in qt. Therefore, the optimal solution must be among three possible values:

q∗t ∈ {0, qdt , xt}.

• At qt = 0, the objective is ρEtVt+1(xt, ρ
−1wt, Pt+1;d), which is convex in (xt, wt, dm) in region

wt ≤ ρm−tdm due to the induction hypothesis.

• At qt = qdt , the objective is ρEtVt+1(xt − qdt , ρ
m−t−1dm, Pt+1;d) = ρEtUt+1(xt − qdt , Pt+1) =

Ro
t (xt−qdt ) = Ro

t

(
xt− (ρm−tdm−wt)/pt

)
, which is linear in (xt, wt, dm). The first equality uses

Lemma 1(i) and the second equality uses Ut(xt, pt) = Ut(1, pt)xt and Ro
t = ρEtUt+1(1, Pt+1).

• At qt = xt, the objective is ρEtVt+1(0, ρ
−1(wt + ptxt), Pt+1;d) = (wt + ptxt − ρm−tdm)+, which

is convex in (wt, xt, dm).

Hence, for wt ≤ ρm−tdm, the value function can be expressed as

Vt(xt, wt, pt;d) = max
{
ρEtVt+1(xt, ρ

−1wt, Pt+1;d), Ro
t

(
xt − (ρm−tdm − wt)/pt

)
,

wt + ptxt − ρm−tdm
}
, for wt ≤ ρm−tdm,

(A.8)

where we omit ( )+ in the last term in the maximization because the first term is non-negative.

Although (A.8) is derived under qdt < xt, it holds for q
d
t ≥ xt as well, because qdt ≥ xt implies that

the first term in maximization is the largest (the other terms are non-positive), which is consistent

with the result for the case of qdt ≥ xt.

Because all three terms in the maximization in (A.8) are convex in (xt, wt, dm) for wt ≤ ρm−tdm,
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Vt(xt, wt, pt;d) is convex in (xt, wt, dm) for wt ≤ ρm−tdm, completing the induction.

To show that Vt(xt, wt, pt;d) is continuous in (xt, wt, dm), we only need to show that it is con-

tinuous on the boundary wt = ρm−tdm. Substitute wt = ρm−tdm into (A.8), we have

Vt(xt, wt, pt;d) = max
{
ρEtUt+1(xt, Pt+1), R

o
txt, ptxt

}

= max
{
Ro

txt, R
o
txt, ptxt

}

= max
{
Ro

t , pt
}
xt

= Ut(xt, pt),

where the first equality follows from Lemma 1(i), the second equality uses the definition of (4),

and the last equality follows from (A.1). On the other hand, for wt ≥ ρm−tdm, we have shown that

Vt(xt, wt, pt;d) = Ut(xt, pt)+wt−ρm−tdm. Therefore, Vt(xt, wt, pt;d) is continuous on the boundary

wt = ρm−tdm, and hence it is continuous in (xt, wt, dm).

Proof of Proposition 4: (i) For notational convenience in this proof, we use Vt as a short notation

for Vt(xt=1, wt=0, Pt;d), i.e., the firm’s value when no asset is sold before period t. Similarly, we

write Ut for Ut(xt=1, Pt).

The value functions are derived in (A.6) and (A.8) for t = m and t < m, respectively. If no asset

is sold before period m, (A.8) also holds for t = m. To see this, use Vm+1 = 0 defined with (5), and

note that (A.8) becomes Vm = max
{
0, Ro

m(1− dm
pm

), pm − dm
}

= max
{
pm, Ro

m

}(
1− dm

pm

)+
, which

is consistent with (A.6). Thus, we focus on (A.8) for the rest of the proof.

When no asset is sold before period t ≤ m, (A.8) becomes

Vt = max
{
ρEtVt+1, Ro

t (1− ρm−tdm/pt), pt − ρm−tdm
}
, (A.9)

where ρEtVt+1 is the expected firm’s value if selling nothing in period t, Ro
t (1 − ρm−tdm/pt) is the

expected firm’s value if selling qt = ρm−tdm/pt to ensure debt payment, and pt − ρm−tdm is the

firm’s value if selling the entire asset in period t.

If pt ≤ ρm−tdm, the second and third terms in (A.9) are non-positive and, therefore, q∗t = 0.

If pt > ρm−tdm, all three terms in (A.9) are non-negative, and we need to compare them in pairs:

(a) ρEtVt+1 > Ro
t (1− ρm−tdm/pt) if and only if pt <

ρm−tdmRo
t

Ro
t−ρEtVt+1

;4

(b) ρEtVt+1 > pt − ρm−tdm if and only if pt < ρEtVt+1 + ρm−tdm;

(c) Ro
t (1− ρm−tdm/pt) > pt(1− ρm−tdm/pt) if and only if pt < Ro

t .

Combining (a) and (b) and the case of pt ≤ ρm−tdm, we see that the first term in (A.9) is the

4The denominator Ro
t − ρEtVt+1 > 0 because Ro

t = ρEtUt+1(1, Pt+1) = ρEtVt+1(1, 0, Pt+1;0) >

ρEtVt+1(1, 0, Pt+1;d), where the equality follows from Lemma 1(i) and the inequality is because any debt reduces
the firm’s value.
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largest (thus q∗t = 0) if and only if pt < min
{

ρm−tdmRo
t

Ro
t−ρEtVt+1

, ρEtVt+1 + ρm−tdm

}
.

Combining (b) and (c), we see that the last term in (A.9) is the largest (thus q∗ = 1) if and only

if pt ≥ max{Ro
t , ρEtVt+1 + ρm−tdm}.

Let us define

R
(1)
t

def
= min

{
ρm−tdmRo

t

Ro
t − ρEtVt+1

, ρEtVt+1 + ρm−tdm

}
, R

(2)
t

def
= max{Ro

t , ρEtVt+1 + ρm−tdm}. (A.10)

Clearly, R
(1)
t ≤ ρEtVt+1 + ρm−tdm ≤ R

(2)
t . The optimal policy is to sell q∗t = 0 if pt < R

(1)
t , sell

q∗t = ρm−tdm/pt if R
(1)
t ≤ pt < R

(2)
t , and sell q∗t = 1 if pt ≥ R

(2)
t .

When q∗t = ρm−tdm/pt occurs, the sales revenue ρm−tdm will ensure the debt payment and,

therefore, the seller can maximize the expected revenue from the remaining asset. According to

Proposition 1, the seller should sell the remaining asset whenever pt ≥ Ro
t .

(ii) By definition, ρEt∆t+1 = ρEtVt+1 − ρ
(
EtUt+1 − ρm−t−1dm

)
= ρEtVt+1 − Ro

t + ρm−tdm. Then,

Et∆t+1 < 0 implies the following two inequalities:

Ro
t > ρEtVt+1 + ρm−tdm >

ρm−tdmRo
t

Ro
t − ρEtVt+1

, (A.11)

where the second inequality can be verified by expanding (Ro
t − ρEtVt+1)(ρEtVt+1 + ρm−tdm) >

ρm−tdmRo
t and then canceling terms, noting that Ro

t − ρEtVt+1 > 0 (see footnote 4). Hence, (A.10)

and (A.11) together imply that R
(1)
t =

ρm−tdmRo
t

Ro
t−ρEtVt+1

< Ro
t = R

(2)
t .

Reversely, Et∆t+1 ≥ 0 implies that Ro
t ≤ ρEtVt+1 + ρm−tdm and thus R

(2)
t = ρEtVt+1 + ρm−tdm.

Et∆t+1 ≥ 0 also implies that
ρm−tdmRo

t

Ro
t−ρEtVt+1

≥ ρEtVt+1 + ρm−tdm and thus R
(1)
t = ρEtVt+1 + ρm−tdm.

Therefore, R
(1)
t = R

(2)
t ≥ Ro

t .

In particular, if Et∆t+1 = 0, then Ro
t = ρEtVt+1 + ρm−tdm. Therefore, R

(1)
t = R

(2)
t = Ro

t .

Proof of Lemma 4: The second inequality in the lemma is immediately implied by the first,

following the definition of ∆t in (5). Below, we prove the first inequality using induction. As before,

for notational convenience, we use Vt as a short notation for Vt(xt=1, wt=0, Pt;d).

Equation (A.6) with xm = 1 and wm = 0 implies

Em−1Vm = Em−1 max
{
pm, Ro

m

}(
1− dm/pm

)+
=

∫ ∞

dm

max
{
pm, Ro

m

}(
1− dm/pm

)
dF (pm|pm−1).

Differentiating the integral with respect to dm and letting dm approach zero, we have

lim
dm→0+

∂Em−1Vm

∂dm
= lim

dm→0+

∫ ∞

dm

−
max

{
pm, Ro

m

}

pm
dF (pm|pm−1)

=

∫ ∞

0
−
max

{
pm, Ro

m

}

pm
dF (pm|pm−1) ≤ −1.

If Pr{pm < Ro
m} > 0, then the integrand −Ro

m/pm < −1 with nonzero probability and the above

inequality becomes strict.
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Now suppose that for t < m, lim
dm→0+

∂EtVt+1

ρm−t−1∂dm
≤ −1. That is, there exists δ > 0, such that for

all dm ∈ (0, δ), we have
∂EtVt+1

ρm−t−1∂dm
≤ −1.

From the proof of Proposition 4, the first term in (A.9) is the largest when pt < R
(1)
t . Hence,

(A.9) leads to

Et−1Vt = Et−1 max
{
ρEtVt+1, Ro

t (1− ρm−tdm/pt), pt − ρm−tdm
}

=

∫ R
(1)
t

0
ρEtVt+1dF (pt|pt−1) +

∫ ∞

R
(1)
t

max
{
pt, R

o
t

}
(1− ρm−tdm/pt)dF (pt|pt−1).

Differentiating with respect to dm and dividing both sides by ρm−t, we have

∂Et−1Vt

ρm−t∂dm
=

∫ R
(1)
t

0

∂EtVt+1

ρm−t−1∂dm
dF (pt|pt−1) +

∫ ∞

R
(1)
t

−
max

{
pt, R

o
t

}

pt
dF (pt|pt−1) + Lt

∂R
(1)
t

ρm−t∂dm
,

(A.12)

where Lt = ρEtVt+1(1, 0, R
(1)
t ,d) −max

{
R

(1)
t , Ro

t

}
(1− ρm−tdm/R

(1)
t ).

The last term in (A.12) actually vanishes because Lt ≡ 0. To see this, note that if Et∆t+1 < 0,

the proof of Proposition 4 shows that R
(1)
t =

ρm−tdmRo
t

Ro
t−ρEtVt+1

< Ro
t , implying that Lt = 0. If Et∆t+1 ≥ 0,

the proof of Proposition 4 shows that R
(1)
t = ρEtVt+1 + ρm−tdm ≥ Ro

t , which also leads to Lt = 0.

Applying the induction hypothesis and −max
{
pt, R

o
t

}
/pt ≤ −1, (A.12) leads to the desired

inequality:

∂Et−1Vt

ρm−t∂dm
≤

∫ R
(1)
t

0
(−1)dF (pt|pt−1) +

∫ ∞

R
(1)
t

(−1)dF (pt|pt−1) = −1, ∀dm ∈ (0, δ).

Therefore, lim
dm→0+

∂Et−1Vt

ρm−t∂dm
≤ −1.

Finally, if Pr{Pt < Ro
t} > 0 for all t ≤ m, then the first integrand in (A.12)

∂EtVt+1

ρm−t−1∂dm
≤ −1−ε

for some ε > 0 and the second integrand −max
{
pt, R

o
t

}
/pt < −1 for pt < Ro

t . Thus, regardless

whether R
(1)
t > Ro

t or R
(1)
t ≤ Ro

t in (A.12), we have

∂Et−1Vt

ρm−t∂dm
≤ −1− ε′, ∀dm ∈ (0, δ), for some ε′ > 0,

which leads to lim
dm→0+

∂Et−1Vt

ρm−t∂dm
< −1.

Proof of Proposition 5: (i) In the paper, the discussion leading to Proposition 5 already proves

the existence and uniqueness of the threshold debt level Dt (for t < m), such that Et∆t+1 > 0 and

strictly increases in dm if dm > Dt, and Et∆t+1 < 0 if dm ∈ (0,Dt).

At t = m, (5) implies that Em∆m+1 = −EmUm+1(1, Pm+1) + ρ−1dm = ρ−1(dm −Ro
m). Thus, in

period m, the unique threshold debt level is Dm = Ro
m.
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(ii) For dm ≥ Dt, part (i) implies that Et∆t+1 ≥ 0. Then, based on Proposition 4(ii), we have

R
(1)
t = R

(2)
t = ρEtVt+1 + ρm−tdm = ρEt∆t+1 +Ro

t ,

where the last equality follows from (4) and (5). Because Et∆t+1 increases in dm for dm ≥ Dt

(discussed before Proposition 5), R
(1)
t = R

(2)
t increase in dm.

For dm ∈ (0,Dt), we know Et∆t+1 < 0 from part (i), and thus R
(2)
t = Ro

t is independent of dm

by Proposition 4(ii).

To show R
(1)
t =

ρm−tdmRo
t

Ro
t−ρEtVt+1

increases in dm, consider the denominator as a function f(dm) ≡

Ro
t − ρEtVt+1(1, 0, Pt+1,d). Note that f(0) = 0 and f(dm) is concave and increasing in dm due to

Lemma 2. Hence, dm/f(dm) is increasing in dm, which is the desired property.

Since R
(1)
t increases in dm, the first-selling time τ = inf{t : pt ≥ R

(1)
t , 1 ≤ t ≤ m} increases in

dm. The proof is similar to Proposition 3(ii).

(iii) With independent prices, Ro
t = ρEtUt+1 and EtVt+1 become deterministic. Consequently, R

(1)
t

and R
(2)
t in (A.10) are deterministic, so is Ro

m.

Using induction, we prove that the threshold debt level Dt is constant and equal to Ro
m. We

have shown Dm = Ro
m in part (i). Suppose Dt = Ro

m for some t ≤ m. We next prove Dt−1 = Ro
m.

When the debt is at the threshold in period t, i.e., dm = Dt = Ro
m, part (i) implies that

ρEt∆t+1 = ρEtVt+1 − Ro
t + ρm−tRo

m = 0, which is independent of pt. Then, using (A.9), when

dm = Ro
m, for any pt, we have

Vt(1, 0, pt,d) = max
{
ρEtVt+1, R

o
t (1− ρm−tRo

m/pt), pt − ρm−tRo
m

}

= max
{
Ro

t − ρm−tRo
m, Ro

t (1− ρm−tRo
m/pt), pt − ρm−tRo

m

}
. (A.13)

Note that Ro
t − ρm−tRo

m ≥ 0 due to Proposition 1(ii). To simplify (A.13), consider three cases:

• If pt ≤ ρm−tRo
m, the second and third terms in (A.13) are non-positive and Vt = Ro

t −ρm−tRo
m.

• If ρm−tRo
m < pt ≤ Ro

t , then Ro
t − ρm−tRo

m ≥ Ro
t (1 − ρm−tRo

m/pt) ≥ pt(1 − ρm−tRo
m/pt) =

pt − ρm−tRo
m. Thus, Vt = Ro

t − ρm−tRo
m.

• If pt > Ro
t , then pt − ρm−tRo

m = pt(1 − ρm−tRo
m/pt) > Ro

t (1 − ρm−tRo
m/pt) > Ro

t − ρm−tRo
m.

Thus, Vt = pt − ρm−tRo
m.

Combining the three cases, we have Vt = Ro
t −ρm−tRo

m if pt ≤ Ro
t , and Vt = pt−ρm−tRo

m if pt > Ro
t .

Therefore, Vt(1, 0, pt,d) = max{Ro
t , pt} − ρm−tRo

m, when dm = Ro
m. Taking expectation over pt and

noting that Ut(1, pt) = max{pt, R
o
t} from the proof for Proposition 1(i), we have

Et−1Vt(1, 0, Pt,d) = Et−1Ut(1, Pt)− ρm−tRo
m, for dm = Ro

m.

Hence, Et−1∆t = Et−1Vt − (Et−1Ut − ρm−tdm) = 0 when dm = Ro
m. Referring to the discussion
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before Proposition 5, we conclude that Dt−1 = Ro
m, which completes the induction.

Because Dt is a constant and equal to Ro
m, part (i) leads to sgn(Et∆t+1) = sgn(dm − Ro

m). The

rest of the results follow immediately from this relation and Proposition 4(ii).

Proof of Proposition 6: Define m0 = 0. For i = 1, . . . , k, we first show that in period t with

mi−1 < t ≤ mi, Vt(xt, wt, pt;d) is convex in (xt, wt) when wt is in each of the following intervals:

Ωi
t ≡

[
0, ρmi−tdmi

]
, Ωi+1

t ≡
[
ρmi−tdmi

,
i+1∑
j=i

ρmj−tdmj

]
, · · · , Ωk

t ≡
[ k−1∑

j=i

ρmj−tdmj
,

k∑
j=i

ρmj−tdmj

]
.

Note that Ωi
t ∪Ωi+1

t ∪ ... ∪Ωk
t =

[
0,

k∑
j=i

ρmj−tdmj

]
. If wt ≥

k∑
j=i

ρmj−tdmj
, Vt(xt, wt, pt;d) is linear in

(xt, wt) due to Lemma 1 and Ut(xt, pt) = Ut(1, pt)xt by the proof of Proposition 1.

We prove the piecewise convexity by induction. In period t = mk ≡ m, the convexity of

Vm(xm, wm, pm;d) in (xm, wm) for wm ∈ Ωk
m =

[
0, dm

]
follows directly from Lemma 3; see (A.6).

Suppose for some t with mi−1 < t < mi, the convexity property holds for period t + 1, i.e.,

Vt+1(xt+1, wt+1, Pt+1;d) is convex in (xt+1, wt+1) for wt+1 ∈ Ωs
t+1 =

[ s−1∑
j=i

ρmj−t−1dmj
,

s∑
j=i

ρmj−t−1dmj

]
,

s = i, . . . , k. Because no payment is due in period t, (3) becomes (A.7), which is repeated here:

Vt(xt, wt, pt;d) = max
0≤qt≤xt

ρEtVt+1

(
xt − qt, ρ

−1(wt + ptqt), Pt+1;d
)
. (A.14)

By the induction hypothesis, the above objective function is convex in qt when ρ−1(wt+ptqt) ∈ Ωs
t+1,

that is, when qt ∈ [0, xt] ∩
[( s−1∑

j=i

ρmj−tdmj
− wt

)
/pt,

( s∑
j=i

ρmj−tdmj
− wt

)
/pt

]
. Therefore,

q∗t ∈
{
0, xt

}
∪

{( s∑
j=i

ρmj−tdmj
− wt

)/
pt, : s = i, . . . , s

}
, (A.15)

where s
def
= max

{
s ≤ k :

( s∑
j=i

ρmj−tdmj
− wt

)/
pt < xt

}
.

Using (A.15), we can write (A.14) as

Vt(xt, wt, pt;d) = max

{
ρEtVt+1(xt, ρ

−1wt, Pt+1;d),
(
ptxt + wt −

k∑
j=i

ρmj−tdmj

)+
,

ρEtVt+1

(
xt −

( s∑
j=i

ρmj−tdmj
− wt

)/
pt, ρ

−1
s∑

j=i

ρmj−tdmj
, Pt+1;d

)
, s = i, . . . , s

}
.

(A.16)

To see Vt(xt, wt, pt;d) is convex in (xt, wt) for wt ∈ Ωs
t , note that each term within the maximization

of (A.16) is convex: first, wt ∈ Ωs
t implies ρ−1wt = wt+1 ∈ Ωs

t+1 and hence the first term is convex

in (xt, wt) by the induction hypothesis; the second term is clearly convex in (xt, wt); the last term

depends on (xt, wt) only through xt+1 = xt −
( s∑
j=i

ρmj−tdmj
− wt

)/
pt, and thus the last term is

convex in (xt, wt) because Vt+1(xt+1, wt+1, Pt+1;d) is convex in xt+1 by the induction hypothesis.

This completes the induction for any period t with mi−1 < t < mi.

In the payment period t = mi−1, if wt ≥ dt, bankruptcy will not happen in period t, and the

proof is identical to the case of mi−1 < t < mi. But if wt ∈ [0, dt), then qt must satisfy qt ≥ qt to
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ensure debt payment. For any pt < (dt −wt)/xt, the seller goes bankrupt, and the value diminishes

to zero (weakly convex). For pt ≥ (dt − wt)/xt, the proof is parallel to the case of mi−1 < t < mi

except that the feasible region is qt ∈ [qt, xt]. This completes the induction.

To find the critical price for the first sale, consider period t = m1 first. Clearly, if pm1 < dm1 ,

the seller will not be able to make the first payment and go bankrupt. Thus, the critical price is

R†
m1 = dm1 .

For t < m1, the value function is given by (A.16) with xt = 1, wt = 0, and i = 1. We can express

the critical prices R†
t(pt) as

R†
t(pt) = pt + ρEtVt+1(1, 0, Pt+1;d)−max

{(
pt −

k∑
j=1

ρmj−tdmj

)+
,

ρEtVt+1

(
1−

s∑
j=1

ρmj−tdmj

/
pt, ρ

−1
s∑

j=1
ρmj−tdmj

, Pt+1;d
)
, s = 1, . . . , s

}
.

If pt < R†
t (pt) for all t ≤ m1 (i.e., τ = ∞), then the seller bankrupts at the end of period m1.

At the time of the first sale τ < ∞, we have xτ = 1, wτ = 0, and (A.15) implies that the optimal

selling quantity is q∗τ ∈
{ j∑

i=1
ρmi−τdmi

/pτ : j = 1, . . . , k
}
∪ {1}.

Proof of Proposition 7: Part (i) is immediate since the seller is debt-free if j = k. For part (ii),

the revenue from the first sale,
j∑

i=1
ρmi−τdmi

, will cover exactly the first j installments. Thus, to

maximize the expected profit, the seller only needs to consider the remaining k − j debt payments

over a horizon of T − τ periods, constituting a new asset-selling problem. The initial wealth of this

new problem is zero because the current wealth of the firm,
j∑

i=1
ρmi−τdmi

, will be used to make the

first j payments that are excluded from the new problem. The initial amount of asset available for

sale in this new problem is h. We can let h be the new unit of asset and scale the price to P̃t = hPt.

Then, the new problem is structurally identical to the original asset-selling problem.

Proof of Proposition 8: We solve the problem defined in (1) using backward induction and prove

the following property of the revenue function: For any t ∈ T , ρEtUt+1(xt+1, Pt+1) is piecewise

linear in xt+1; the slopes for the n segments (0, ℓ], (ℓ, 2ℓ], . . . , ((n− 2)ℓ, (n− 1)ℓ] and ((n− 1)ℓ, 1] are

Ro
t,n ≥ Ro

t,n−1 ≥ · · · ≥ Ro
t,1, respectively, and the slopes satisfy part (ii) of the proposition.

The property clearly holds for t = T , as UT+1(., .) ≡ 0 and Ro
T,i = 0, i = 1, . . . , n, as given in part

(iii). To see the property in period T −1, note that q∗T = min(xT , ℓ) and UT (xT , pT ) = min(xT , ℓ)pT .

Hence, ρET−1UT (xT , PT ) is piecewise linear with slope ρET−1PT for xT ∈ [0, ℓ] and slope 0 for

xT > ℓ. These slopes are consistent with part (iii): Ro
T−1,n = Ro

T−1 and Ro
T−1,i = 0 for i < n.

Suppose we have proved the stated property for ρEtUt+1(xt+1, Pt+1). We now find the revenue

function Ut(xt, pt) = max
0≤qt≤min(xt,ℓ)

ptqt + ρEtUt+1(xt − qt, Pt+1), as defined in (1).
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Consider inventory xt in the first segment (0, ℓ]. Solving (1) amounts to comparing pt with

Ro
t,n = Ro

t . There are two cases: (a) if pt ≥ Ro
t , then q∗t = xt, and the marginal value of inventory is

pt; (b) if pt < Ro
t , then q∗t = 0, and the marginal value of inventory is Ro

t , which is the discounted

marginal value of inventory in the next period. Combining these two cases, the marginal value of

inventory is max{pt, R
o
t} for inventory xt ∈ (0, l]. Thus, ρEt−1Ut(xt, Pt) is linear in xt for xt ∈ (0, ℓ]

with slope ρEt−1 max{Pt, R
o
t } = Ro

t−1, where the equality is from Proposition 1(ii).

Next, consider inventory xt in the i-th (i ∈ {1, . . . , n− 1}) segment from the right of the interval

(0, 1]. In solving the concave maximization problem in (1), we compare pt with the slopes of

ρEtUt+1(xt+1, Pt+1) given in the induction hypothesis. Since we can sell no more than ℓ per period,

we need to compare pt with only two slopes Ro
t,i and Ro

t,i+1. The optimal selling quantity is

q∗t =





0, if pt < Ro
t,i;

xt −
( ⌈

xt

ℓ

⌉
− 1

)
ℓ, if Ro

t,i ≤ pt < Ro
t,i+1;

ℓ, if pt ≥ Ro
t,i+1.

(A.17)

For the three cases in (A.17), the marginal value of inventory is Ro
t,i, pt, and Ro

t,i+1, respectively.
5

Combining these three cases and noting that Ro
t,i ≤ Ro

t,i+1, the marginal value of inventory is

median{pt, R
o
t,i, R

o
t,i+1}. Thus, ρEt−1Ut(xt, Pt) is linear in xt for xt in the i-th segment from the

right, with slope ρEt−1median{Pt, R
o
t,i, R

o
t,i+1} = Ro

t−1,i. Finally, since R
o
t,i increases in i, Ro

t−1,i also

increases in i. Hence, the property holds for t− 1, which completes the induction.

In the above induction, if the seller makes a sale, the selling quality is either ℓ or xt−
( ⌈

xt

ℓ

⌉
−1

)
ℓ.

Hence, the asset is divided into n =
⌈
1
ℓ

⌉
pieces, with n − 1 pieces of ℓ and a remainder of size

r ≡ 1 − (n − 1)ℓ. Regardless of when the remainder r is sold, before the i-th sale, the inventory is

in the i-th segment from the right (see the list of segments at the beginning of the proof), and thus

follow the optimal rule in (A.17). The i-th sale is made only when Pt ≥ Ro
t,i. The selling quantities

in part (i) are implied by (A.17).

Proof of Lemma 5: We prove piecewise convexity by induction. In period m = T , the value

function in (2) is VT (xT , wT , pT ;d) = (pT min(xT , ℓ) + wT − dT )
+, which is a convex function of

(xT , wT ) in two regions: xT ∈ (0, ℓ] and xT ∈ (ℓ, 1].

Suppose for some t < T , Vt+1(xt+1, wt+1, Pt+1;d) is convex in (xt+1, wt+1) when xt+1 is in each

of the following n regions: (0, ℓ], (ℓ, 2ℓ], . . . , ((n − 2)ℓ, (n − 1)ℓ] and ((n − 1)ℓ, 1]. Then in period t,

5In the last case when pt ≥ Ro
t,i+1, it is optimal to sell ℓ, and thus xt+1 is in the i + 1st segment from the right.

Therefore, having ε units less of inventory in period t will reduce xt+1 by ε and reduce the discounted expected future
revenue by Ro

t,i+1.
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because dt = 0, the value function in (3) becomes

Vt(xt, wt, pt;d) = max
0≤qt≤min(xt,ℓ)

ρEtVt+1(xt − qt, ρ
−1(wt + ptqt), Pt+1;d).

Suppose xt ∈
(
jℓ,min((j + 1)ℓ, 1)

]
, for j ∈ {1, . . . , n − 1}. By the induction hypothesis, Vt+1(xt −

qt, ρ
−1(wt+ptqt), Pt+1;d) is convex in qt for qt ∈ [0, xt−jℓ] and qt ∈ [xt−jℓ, ℓ], considered separately.

Since the convex objective is maximized at the endpoints of the intervals, we have q∗t ∈ {0, xt−jℓ, ℓ}.

Hence, the value function can be expressed as

Vt(xt, wt, pt;d) =ρmax{EtVt+1(xt, ρ
−1wt, Pt+1;d), EtVt+1(jℓ, ρ

−1(wt + (xt − jℓ)pt), Pt+1;d),

EtVt+1(xt − ℓ, ρ−1(wt + ℓpt), Pt+1;d)}. (A.18)

Because all three terms in the maximization in (A.18) are convex in (xt, wt) for xt ∈ (jℓ,min((j +

1)ℓ, 1)], Vt(xt, wt, pt;d) is convex in (xt, wt) for xt ∈ (jℓ,min((j + 1)ℓ, 1)], for j ∈ {1, . . . , n− 1}.

If xt ∈ (0, ℓ], similar logic leads to q∗t = {0, xt} and the convexity of Vt(xt, wt, pt;d) for xt ∈ (0, ℓ],

which completes the induction.

Proof of Proposition 9: (i) In the proof of Lemma 5, when xt ∈ (jℓ,min((j + 1)ℓ, 1)], j ≥ 1, the

optimal decision q∗t ∈ {0, xt − jℓ, ℓ}. If q∗t = xt − jℓ, then xt+1 = jℓ, and future sales quantity will

be either 0 or ℓ.

The three decisions {0, xt − jℓ, ℓ} corresponds to the three terms in the maximization in (A.18).

Hence, we can express the critical prices for the first sale as

Rc
t(pt) = pt + ρEtVt+1(1, 0, Pt+1 ;d)− ρmax

{
EtVt+1((n− 1)ℓ, ρ−1(1− (n− 1)ℓ)pt, Pt+1;d),

EtVt+1(1− ℓ, ρ−1ℓpt, Pt+1;d)
}
.

The first sale is triggered by pt ≥ Rc
t(pt), which proves part (i).

(ii) After the first sale q∗τc ∈ {ℓ, r} is made in period τ c < T , the problem facing the seller is to sell

the remaining asset 1 − q∗τc over T − τ c periods with a debt maturing at T . As part of the debt

is covered by the first sale, the debt in the new problem is effectively d′T =
(
dT − q∗τcpτc/ρ

T−τc
)+

.

This problem is structurally identical to the original problem.
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